Преимущества релейного стабилизатора
Теперь вы уже знаете принцип работы этого устройства. Теперь вам необходимо будет узнать о преимуществах этого устройства. К основным преимуществам на сегодняшний день можно отнести:
- Небольшие размеры. Этот процесс обусловлен только тем, что вольтодобавочный трансформатор способен только компенсировать разницу между вольтами.
- Широкий диапазон величин напряжения.
- Достаточно широкий спектр рабочей температуры. Некоторые модели могут работать при температуре от -40 до +40 градусов.
- Низкий уровень шумности.
- Низкий уровень чувствительности.
- Допустимая длительная перегрузка составляет до 110 процентов.
Также многие производители сообщают, что эта продукция может работать на протяжении длительного времени.
Определение типа защиты
На сегодняшний день стабилизаторы делятся на 2 основных типа:
- стационарные приборы для стабилизации напряжения, их монтаж делают на весь дом;
- переносные модели, они могут стабилизировать работу всего нескольких электрических устройств.
Также, стабилизаторы стационарного назначения подразделяются на однофазные и трехфазные, все зависит от условий, в которых их планируют эксплуатировать. В своем доме или квартире более уместным будет установить и подключить стабилизатор вблизи распределительного щита электроэнергии, с помощью такого шага вы сможете предотвратить сбои и перегрузки всей сети.
Увеличение мощности параметрического стабилизатора
Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.
Параллельный стабилизатор
Схема ПСН с параллельным включением транзистора
Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.
Коэффициент стабилизации будет равен
где RVT – входное сопротивление эмиттерного повторителя
где Re и Rb – сопротивления эмиттера и базы транзистора.
Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.
Последовательный стабилизаттор
Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.
Схема ПСН с последовательным включением транзистора
Выходное напряжение стабилизатора:
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.
Коэффициент стабилизации схемы
где Rk – сопротивление коллектора биполярного транзистора.
Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.
Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Использование интегральных стабилизаторов напряжения в качестве источников опорного напряжения
Интегральные стабилизаторы напряжения, выпускаемые промышленностью в настоящее время, имеет широкую номенклатуру изделий, и характеризуются высокими техническими параметрами. Так, например, широко применяемая микросхема стабилизатора напряжений серии КР142ЕН выпускаются на различные стабилизируемые напряжения от 5 до 30 В, имеют коэффициент нестабильности по напряжения не менее 0,1 %/В, а коэффициент сглаживания пульсаций не менее 30 дБ. Поэтому они наилучшим образом подходят в качестве источников опорного напряжения в мощных линейных стабилизаторах напряжения. Схема использования их в качестве опорных источников напряжения показана ниже
Использование интегральных стабилизаторов напряжения в качестве источника опорного напряжения.
Согласно технической документации микросхемы типа КР142ЕНхх на вход и выход необходимо включить конденсаторы: С1 ≥ 2,2 мкФ, С2 ≥ 1 мкФ.
При использовании интегральных стабилизаторов достаточно просто реализовать регулируемый стабилизатор напряжения, для этого достаточно поставить на выходе источника опорного напряжения переменный резистор, со среднего отвода которого снимать напряжение на операционный усилитель
Регулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряжения.
Вышеописанные схемы стабилизаторов напряжения на ОУ позволяют получить очень хорошие показатели стабильности выходного напряжения. Однако ОУ не могут обеспечить достаточно большой выходной ток (обычно несколько десятков мА), поэтому выходная мощность ограничена долями ваттами, в зависимости от выходного напряжения.
Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора.
Аккумулятор для частного дома: схемы подключения
Литий ионный аккумулятор
Схема подключения АКБ
Резервное электроснабжения для загородного дома с использованием аккумулятора может монтироваться по двум основным схемам:
- Последовательное соединение АКБ. При этом напряжение будет увеличиваться кратно, например, при использовании батареи номиналом 12В два последовательно соединенных изделия образуют сеть, равную 24В, чем больше аккумуляторов, тем выше этот показатель;
- Параллельная схема. В данном случае кратно увеличивается не напряжение, а сила тока, при этом мощность остается равной 12 Вольт, не зависимо от количества приборов.
Схему подключения необходимо применять в зависимости от расчета потребляемой энергии на бытовые приборы и в соответствии с нужным напряжением.
Урок 1.12 Стабилизаторы напряжения
Стабилизатор напряжения, это устройство, которое при изменении входного напряжения и тока нагрузки удерживает выходное напряжение на заданном неизменном уровне. Простейший стабилизатор напряжения, схема:
Основным элементом стабилизатора является стабилитрон, на схеме он обозначен VD. Стабилитрон, это диод, с определенным пробивным обратным напряжением. Напряжение, при котором наступает пробой, называется напряжением стабилизации. Это напряжение остается постоянным при изменении тока через стабилитрон от значения Iст мин до Iст макс. (показано на графике ниже). Величина тока стабилизации задается балластным резистором R. Именно ограничение тока не позволяет выходить из строя стабилитрону при пробивном напряжении на нем. Пробивное напряжение у стабилитрона является рабочим и называется напряжением стабилизации.
Как работает стабилизатор напряжения, рассмотрим на конкретном примере.
Допустим, на выходе нужно иметь постоянное напряжение 12 В, при напряжении на входе 220 В. Задаем диапазон допустимого изменения напряжения на входе, например ±10%. Это значит, что напряжение будет изменяться от 198 В до 242 В. Напряжение после выпрямления диодами так же будет изменяться на ±10%. Но даже уменьшенное на 10% оно должно превышать необходимое на выходе 12 В на величину падения напряжения на балластном резисторе R. С учетом этого, для работы стабилизатора выберем трансформатор, вторичная обмотка которого будет обеспечивать после диодов 15 В, при напряжении на входе трансформатора 220 В. Тогда, при изменении напряжения на входе на ±10% напряжение после выпрямления диодами будет изменяться от 13,5 В до 16,5 В. На балластном резисторе будет падать максимум 4,5 В. Ток стабилитрона возьмем приблизительно средний, 20 мА (смотри слева на вольт-амперной характеристике). Это напряжение делим на выбранный ток стабилитрона 20 мА (0,02 А) и получаем величину сопротивления балластного резистора:
4,5 : 0,02 = 225 Ом, выбираем ближайший стандартный номинал 220 Ом, мощность рассеиваемая этим резистором составит 4,5 В × 0,02 А = 0,09 Вт, ближайший стандарт 0,125 Вт.
Для наглядности сведем эти данные в таблицу:
Напряжение сети | Напряжение после выпрямителя | Ток стабилитрона | Напряжение на нагрузке |
220 В | 15 В | 14 мА | 12 В |
198 В | 13,5 В | 7 мА | 12 В |
242 В | 16,5 В | 20 мА | 12 В |
При изменении напряжения на первичной обмотке трансформатора от 198 В до 242 В, напряжение после выпрямления диодами будет меняться от 13,5 В до 16,5 В, а на выходе стабилизатора напряжение будет оставаться равным 12 В. Все лишнее напряжение будет падать на балластном резисторе R.
Другими словами при повышении напряжения ток через стабилитрон будет увеличиваться, что приведет к увеличению падения напряжения на балластном резисторе, в результате чего на выходе стабилизатора напряжение останется неизменным.
Основным недостатком рассмотренной схемы является то, что ток нагрузки не может превышать 0,1 тока через стабилитрон. В нашем примере, максимальный ток нагрузки не может превышать 20 мА × 0,1 = 2 мА. Если ток будет больше, то выходное напряжение не сможет удерживаться на заданном уровне 12 В.
Стабилизатор напряжения с усилителем на транзисторе.
Чтобы стабилизатор мог обеспечивать больший ток в нагрузке, применяют усилители на транзисторах. Ниже приводится простейшая схема стабилизатора напряжения с усилителем на одном транзисторе.
Принцип работы этого стабилизатора аналогичный описанному выше. Отличие состоит в том, что ток нагрузки не течет через стабилитрон, а течет через коллектор-эмиттер транзистора. Стабилитрон поддерживает на базе транзистора стабильное напряжение, такое же стабильное напряжение, отличающееся на небольшое (меньше 1 вольта) падение напряжения на открытом p—n переходе база-эмиттер транзистора, будет и на нагрузке.
↑ Настройка
Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1. Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор. После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться. При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает. При напряжении на выходе больше 242V горит синий диод, а зеленый мигает. Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки «Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт». Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.
Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).
Основные технические характеристики LM338
Простой регулируемый источник питания
Первая схема — типовое подключение обвязки LM338. Схема обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.
Переменный резистор R1 используется для плавного регулирования выходного напряжения.
Простой 5 амперный регулируемый источник питания
Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.
Регулируемый источник питания на 15 ампер
Как уже было сказано ранее микросхема LM 338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:
В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.
Переменный резистор R8 предназначен для плавной регулировки выходного напряжения
Источник питания с цифровым управлением
В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.
Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.
Схема контроллера освещения
Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.
Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.
Зарядное устройство 12В на LM338
Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.
Схема плавного включения (мягкий старт) блока питания
Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С1 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.
Схема термостата на LM338
LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.
Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.
Информация взята с joyta.ru
Купить Регулируемые стабилизаторы напряжения LM338 за $2.65
Низкочастотные устройства
Для обслуживания устройств с частотой менее 30 Гц существует такой стабилизатор напряжения 220В. Схема его схожа со схемами релейных моделей за исключением транзисторов. В данном случае они имеются с эмиттером. Иногда дополнительно устанавливается специальный контроллер. Многое зависит от производителя, а также модели. Контроллер в стабилизаторе необходим для передачи сигнала на блок управления.
Для того чтобы связь была качественной, производители используют усилитель. Устанавливается он, как правило, на входе. На выходе в системе имеется обычно обмотка. Если говорить про предел напряжения в 220 В, конденсаторов можно найти два. Коэффициент передачи тока у таких устройств довольно низкий. Причиною этого принято считать малую предельную частоту, которая является следствием работы контроллера. Однако коэффициент насыщения находится на высокой отметке. Во многом это связано именно с транзисторами, которые устанавливаются с эмиттерами.
Схемы стабилизаторов напряжения на транзисторах
Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе – уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.
В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу диодного моста. Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.
Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.
Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. Транзистор VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы – К50-35, резисторы – МЛТ-0,5.
Что это такое
В литературе дается следующее определение:
Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.
Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.
На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.
Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.
Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.
Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.
Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.
На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.
На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.
Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.
Сборка стабилизатора напряжения 220В своими руками
Многие умельцы считают стоимость заводских выпрямителей слишком высокой, поэтому предпочитают изготовить его самостоятельно. Все комплектующие для прибора приобретаются в соответствующих магазинах. Собирается преобразователь своими руками по схеме стабилизатора напряжения 220В. Схему размещения всех элементов печатают на принтере и переносят на плату, используя обычный утюг.
Из положительных качеств таких стабилизаторов можно отметить только низкую стоимость и возможность заменить вышедший из строя элемент самостоятельно. Что касается качества и надежности таких моделей, то здесь явное преимущество у заводских приборов. Ведь для того, чтобы собрать модель с высокой эффективностью и мощностью необходимо специальные измерительные приборы.
Чтобы собрать стабилизатор самостоятельно, потребуется разобраться во всех тонкостях функционирования выпрямителей, приобрести все соответствующие детали и выполнить их корректный монтаж. Если такой уверенности нет, лучше отдать предпочтение качественной заводской модели, пусть и более дорогой по стоимости, но превосходящей по всем остальным критериям самодельный аналог.
Если цена всего бытового оборудования и электроприборов, находящихся в вашем доме значительно выше, чем стоимость даже дорогого преобразователя напряжения, будет естественным решение о его приобретении.
https://youtube.com/watch?v=nHulG9WGtqo
Неисправности электромеханических стабилизаторов напряжения
Наиболее распространённая причина поломки электромеханических стабилизаторов заключается в выходе из строя щёточного механизма или сервопривода. Реже встречаются проблемы с управляющей платой, хоть они и свойственны для всех стабилизирующих аппаратов.
Сердцем электромеханического стабилизатора является тороидальный трансформатор с оголённой в одном месте обмоткой. По этому проводящему участку движется с сильным трением графитовая щётка. Через неё же протекают силовые токи потребителя. В результате щёточный узел подвержен как механическому, так и тепловому износу. В случае разрушения он подлежит замене.
Графитовые щётки
Сама механика также может дать сбой. Крепежи щётки, винты и её держатель со временем разбалтываются. В случае обнаружения люфта их следует протянуть. После необходимо убедиться в равномерности прижима щёточного узла к обмотке трансформатора.
Это интересно: Электросчетчик сильно мотает: что делать?
Стабилизаторы тока на микросхемах
Применение такой элементной базы несколько увеличивает себестоимость проекта. Однако использование качественных микросхем обеспечивает хорошие стабилизационные характеристики в широком диапазоне входных параметров. С учетом хороших показателей эффективности можно рассчитывать на небольшое потребление электроэнергии.
TL431
В левой части рисунка показана схема типового подключения микросхемы TL 431 (DA1). Отмечена главная функция – поддержание напряжения 2,5 V на контрольном резисторе.
Такая конструкция пригодна для последовательного подключения нескольких десятков светодиодов суммарной мощностью 12-14 Вт. Силовые компоненты подбирают с учетом реальных потребностей. В представленном примере падение напряжения на транзисторе составит 25-35V. Рассеивается не более 1,75 Вт. В таком варианте радиатор не требуется.
Резистор на входе (R3) предотвращает повреждение конденсатора при включении блока в сеть. Ток в нагрузке ограничивает безопасным уровнем сопротивление R3. При выборе светодиодов специалисты рекомендуют делать запас по мощности, чтобы продлить срок службы одновременно с уменьшением тепловыделения.
LM7805, LM7812
В представленном ниже варианте схемотехники следует повысить входное напряжение. Его уровень должен быть больше на 2,5-3V, чем номинал стабилизации данной микросхемы.
В примере показан стабилизатор напряжения постоянного тока, который рассчитан на 9-11 Вт подключаемой нагрузки.
LM317
При подключении нагрузки 28-30 Вт эта микросхема обеспечивает стабилизацию тока 100 мА. Диапазон входного напряжения – от 207 до 240 V.
В таблице на рисунке представлены значения регулировочного резистора, соответствующие определенным выходным параметрам.
При выборе подходящей схемы следует учесть в комплексе:
- минимальные и максимальные напряжения в цепи питания;
- точность стабилизации;
- эффективность устройства;
- сложность изготовления определенной конструкции собственными руками;
- стоимость комплектующих деталей, расходных материалов.
Заранее рекомендуется подготовить перечень инструментов, приспособлений, измерительных приборов. Аккуратное выполнение рассмотренных выше инструкций поможет создать функциональный стабилизатор без ошибок и лишних затрат.
Регулятор напряжения генератора
Генератор преобразует электричество. Без генератора не работала бы вся бортовая система машины. К обмотке магнита подключён специальный датчик. Простые пружины являются задающим устройством. Для устройства сравнения используется маленький рычаг. Группа контактов играет роль исполнительного устройства. Постоянное сопротивление представляет собой орган регулировки, который часто используется в машинах.
Во время работы генератора на его выходе возникает ток. Возникший ток переходит в обмотку магнитного реле. В результате появляется магнитное поле и под его воздействием плечо рычага раздвигается. На него начинает действовать пружина, и играет роль сравнивающего устройства. Когда ток превышает положенные значения, на магнитном реле контакты раздвигаются. В это время отключается постоянное сопротивление в цепи. Меньший ток поступает на обмотку.
Пожалуй, всем полезно знать, что такое класс точности электросчетчика.