Покрытие материалов / 25 химическое оксидирование алюминия и его сплавов / 25 химическое оксидирование алюминия и его спла

Виды коррозии

Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого процесса, является классификация по механизму протекания.

По этому критерию различают два вида коррозии:

  • химическую
  • электрохимическую

Химическая коррозия

Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

Электрохимическая коррозия

Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит.

В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

Смотрим. Cлева расположены более активные металлы, справа — менее активные.

Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

Схема гальванического элемента

Для наглядности рассмотрим несколько простых примеров.

Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

Стальной болт — медная гайка (корродирует сталь)

А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

Свойства

Давайте изучим характеристики алюминия. Описываемый металл плавится при температуре 659 градусов Цельсия. Плотность вещества составляет 2,69*103 кг/см3. Алюминий относят в группу активных металлов. Устойчивость к коррозионным процессам зависит от ряда факторов:

Чистота сплава. Для производства различного оборудования берут металл, отличающейся своей чистотой. В нем не должно быть различных примесей. Широко распространен алюминий марки АИ1, а также АВ2.
Среда, в которой находится алюминий.
Какая концентрация примесей в окружающей алюминий среде.
Температура.
Большое влияние оказывает рН среды. Нужно знать, что оксид алюминия может образовываться, когда рН находится в интервале между 3 и 9. В той среде, где на поверхности листа алюминия сразу же появляется оксидная пленка, коррозионные процессы развиваться не будут.
Вам будет интересно: Что такое «патриции»? Исторические сведения

Сплавы других металлов подвержены появлению ржавчины. Она проявляется достаточно быстро. Если создать для алюминия определенные условия, то он не будет разрушаться долгие годы. Для защиты алюминия от коррозии на нем образуется специальная пленка. Она ложится тонким слоем, который составляет от 5 до 10 миллиметров. Состоит подобное покрытие из оксида алюминия.

Пленка является прочной и дает металлу дополнительную защиту от внешних негативных воздействий. Благодаря такому слою воздух и влага не попадают в структуру материала. Если целостность оксидного покрытия нарушается, то начинается процесс коррозии алюминия. Металл теряет свои свойства.

Вам будет интересно: Альтернативность — это наличие выбора возможностей

Когда встает вопрос о том, ржавеет ли алюминий, необходимо задуматься о причинах, приводящих к коррозии. Различные внешние факторы могут ускорять этот процесс. Причины появления ржавчины на алюминии могут быть следующими:

Взаимодействие с какой-либо кислотой или щелочью.
Механическое давление. Например, трение или сильный удар, после чего появляется царапина на верхнем слое металла.
Существуют промышленные районы. В них продукты распада топлива влияют на оксидную пленку и разрушают ее. Металл начинает портиться. Аналогичная ситуация происходит в мегаполисах, где продукты распада топлива будут взаимодействовать с серой, а также с оксидами углерода. Подобный процесс разрушает пленку на алюминии. После такого рода внешнего воздействия алюминий подвергается коррозии.
Следует помнить, что хлор, фтор, а также бром и натрий могут растворить защитный слой металла.
Если на металл попадают строительные смеси, то он начинает быстро портиться. В данном случае на алюминий неблагоприятно воздействует цемент.
Ржавеет ли алюминий от воды? Если она попадает на лист, то металл может быть подвержен коррозионным процессам. Важно при этом уточнить, какая жидкость оказывает воздействие. Многие используют специальный сплав, который не подвержен коррозии от воды. Его называют дюралюминием. Уникальный сплав используют вместе с медью, а также с марганцем.

Чаще всего появление электрохимической коррозии провоцируют гальванические пары. Повреждение появляется в месте соединения двух разных сплавов. В таком случае ржавчина будет явно бросаться в глаза. Важным моментом является то, что портится только один металл, а второй является источником запуска коррозионного процесса. Чтобы не бояться электрохимической коррозии, нужно использовать магниевый сплав. Специалисты из-за электрохимической ржавчины не рекомендуют использовать обычное железо при контакте с кузовом из алюминия.

Существует ряд факторов, которые замедляют процессы коррозии алюминия, а некоторые из них останавливают подобное явление. Выделяют следующие:

Чтобы свойства алюминия, препятствующие коррозии, сохранялись, необходимо поддерживать кислотно-щелочной баланс. Диапазон должен составлять от шести до восьми единиц.
Считается, что чистый металл, без примесей, лучше противостоит агрессивной среде. Учеными были проведены эксперименты. По результатам можно сказать, сплавы чистого алюминия (90%) подвержены коррозии больше, чем сплав, содержащий 99% этого вещества. У первого варианта коррозия наступает в 80 раз быстрее, чем у второго сплава.
Чтобы в агрессивной среде металл дольше не терял свои свойства, его обрабатывают специальной краской. Можно использовать полимерный состав. После обработки появляется дополнительный защитный слой.

Выбор инструментов и материала для покраски металлических изделий

После того как поверхность очищена, нужно подготовить все, чем вы будете красить металлическое изделие, то есть инструменты и материалы:

Красящий состав.

Если вы собираетесь вручную красить листовое металлическое изделие, вам понадобится валик и кисть для наиболее сложных зон. Чтобы красить механизированным способом, берут краскопульт. Второй вариант подходит, если предстоит покрыть большую площадь, ведь сделать это вручную очень непросто. Однако нельзя забывать о том, что краска для краскопульта должна иметь определенную вязкость.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

Смесь для грунтования.

Для обычного основания можно взять простой раствор для металла. Предметы из цветных материалов более капризны, поэтому им нужна специальная грунтовка. Если изделие поражено ржавчиной, подойдет грунт-преобразователь – он взаимодействует с поврежденным участком, формируя на его месте защитный слой.

Отдельная емкость для краски.

Емкость выбирают в соответствии с используемым инструментом, валиком или кистью – от правильного подбора зависит ваше дальнейшее удобство в работе.

Не забудьте прочитать инструкцию на упаковке краски

Очень важно учитывать, при каких условиях допускается работа с конкретным составом. Обычно минимальной температурой считается +5 °С, а допустимая влажность не превышает 80 %

Коррозия металлов и меры борьбы с ней

Коррозия металлов — это процесс их разрушения
вследствие химического и электрохимического взаимодействия с внешней
(коррозионной) средой. В результате коррозии ежегодно теряется в
мире до 10 % годовой выплавки новой стали. Потери от коррозии (на
воспроизводство и замену вышедших из строя конструкций и
оборудования) исчисляются колоссальными суммами, вследствие чего
применяются всевозможные средства и методы борьбы с коррозией
металлов.
В зависимости от характера коррозионного процесса различают
химическую и электрохимическую коррозию металлов.
При химической коррозии металл разрушается в агрессивных средах
вследствие непосредственного соединения металла с агрессивными
химическими агентами (например, железо окисляется).
При электрохимической коррозии разрушение металлов происходит
вследствие их растворения в жидкой среде, являющейся электролитом, и
заключается в образовании на их поверхности множества
микрогальванических элементов.
Наиболее распространенными являются два катодных процесса:
1) разряд водородных ионов по реакции:
2) восстановление растворенного кислорода:

232

Как определить электрохимическую коррозию?

За редким исключением, коррозия формируется на поверхности металла, постепенно разрастаясь и проникая в глубокие слои. Существует несколько типов повреждений разной степени тяжести.

На рисунке показаны виды коррозионного разрушения:

  1. Сплошная. Покрывает всю поверхность изделия равномерным слоем. Возникает при полном контакте с электролитом, например, при нахождении изделия в растворе кислоты.
  2. Неравномерная. Коррозионная пленка покрывает всю поверхность изделия, но внутренние повреждения распространяются неравномерно.
  3. Пятна. Возникают в разных местах и не проникают на большую глубину.
  4. Язвы. Повреждения с глубоким проникновением. Распространение хаотичное.
  5. Точечная. Поражение на большую глубину. Сложный вид коррозии, так как на поверхности может выглядеть как обычное пятно, но при этом с очень глубоким проникновением.
  6. Межкристаллическая. Поражает кристаллическую решетку и в некоторых случаях не имеет выхода на поверхность.
  7. Растрескивающая. Коррозия, возникающая при одновременном контакте с электролитом, и при механическом воздействии на металл. Один из признаков старения механизмов и подвижных деталей.

Сплошная или равномерная коррозия наименее опасна в техническом плане. Она возникает по всей поверхности металла. Легко определяется на глаз и относительно просто поддается удалению. Более сложные процессы, особенно с глубоким проникновением остановить сложнее, а выявить зачастую невозможно без специальной экспертизы.

Электрохимическая коррозия – процесс неизбежный и необратимый. Однако, своевременное обнаружение позволяет принять меры по замедлению этого процесса.

Визуальное определение не дает полной картины происходящего. В частности оно не позволяет выявить кинетическую связь, то есть определить скорость протекания процесса. Для этого были разработаны различные меры контроля и преодоления коррозии:

  • Металлография. Ряд методов, часть из которых позволяет проводить анализ без необходимости изъятия образцов. Существуют металлографические методы для определения межкристаллитной коррозии, благодаря которым можно выявить склонность металла к разрушению, а также скорость процесса при определенных условиях эксплуатации.
  • Химические методы позволяют определить целостность структуры кристаллической решетки. Их также довольно много, а самым распространенным является кипячение нержавеющих сталей в натриевом растворе. Анализируется сам раствор на процентное соотношение в нем атомов железа к атомам хрома.
  • Механические испытания. В зависимости от эксплуатационного назначения исследуемого объекта применяют методы испытания на растяжение, прочность, изгиб, вязкость, а также прочность на выдерживание давления.
  • Рентген. Один из наиболее точных методов определения электрохимической коррозии, но самый трудоемкий и затратный.

Выбор метода испытания зависит от многих факторов. В частности от опасности эксплуатации поврежденного металла. В бытовых условиях коррозия определяется визуально, и в большинстве случаев этого достаточно для понимания общей картины происходящего и необходимости принятия мер.

Возвращаясь к разговору о полотенцесушителях, отметим, что наиболее стойким материалом к возникновению электрохимической коррозии считается нержавеющая сталь марки AISI 304 (наиболее качественная). Но и она может со временем дать слабину и тогда вы заметите сначала небольшие темные пятна на поверхности, увеличивающиеся в размерах и в глубине со временем.

Характерным признаком коррозии является точка-отверстие на очищенной (механическим путем) поверхности, которая свидетельствует о том, что процесс поражения водой с электричеством проходит и внутри. Конечно, существуют и дополнительные способствующие составы, присутствующие в воде — это кислород, хлор, кальций, магний, а также высокая температура! Наиболее подверженными коррозии элементами полотенцесушителя являются сварные швы, на которых в последствие появляются свищи и подтеки.

Естественное оксидное покрытие

Естественная поверхность алюминия, которая возникает в ходе изготовления алюминиевого изделия, например, прессованием, прокаткой или литьем, имеет высокое сопротивление коррозии в большинстве типов окружающей среды. Это происходит потому, что свежая поверхность алюминия спонтанно и мгновенно образует тонкий, но очень эффективный оксидный слой, который предотвращает дальнейшее окисление металла.

Эта оксидная пленка является непроницаемой и, в отличие от оксидных пленок других металлов, например, железа, очень прочно «прикрепляется» к основному металлу. При каком-либо механическом повреждении эта пленка мгновенно восстанавливается, залечивается.

Естественный оксидный слой и является главной причиной хорошего сопротивления алюминия к коррозии. Это покрытие является стойким в средах с кислотностью – водородным показателем рН – от 4 до 9.

Технологии извлечения алюминия

Продуктом разрушения образований является глина, состоящая из каолинита. В ней иногда содержится примесь железа, придающая бурый цвет.

Несмотря на то, что в природе существует много минеральных образований, не все они являются рудным материалом для извлечения ценного компонента. Для добычи используют бокситовые руды, в которых содержится промышленная концентрация металла.

Алюминий образует минерал корунд, по твердости уступающий алмазу. Содержание в алюминиевом соединении Al2O3 примеси оксида хрома, титана и железа формирует драгоценные минералы рубин и сапфир.

  • Из обогащенной руды ценный компонент извлекают путем электролиза раствора оксида в расплавленном соединении фтора, натрия и алюминия (криолите). Такой способ позволяет проводить электролиз при температуре менее 1000 °C.
  • Благодаря низкой плотности расплава, жидкое соединение опускается на дно, что облегчает извлечение. При электролитическом получении металла для начала из глинозема выделяют чистый оксид Al2O3.
  • Перед использованием руду очищают от примесей соединений железа, кремния, кальция. При обжиге бокситов испаряется содержащаяся в минералах вода. Полученный материал разделяют при воздействии углекислого газа на соединение.

Широко применяется в производстве чистого алюминия химический способ. Он состоит в обработке руды щелочью NaOH при температуре 220 °C с получением Al (OH)2. В результате гидролиза раствора происходит окисление алюминия и осаждение его соединения.

Потом в результате использования углекислого газа получают соду и поташ. Для получения химически чистого материала технический материал нагревают в парах AlF3 с последующим охлаждением. В результате изменения температуры происходит выделение чистого алюминия.

Производство металла высокой чистоты предусматривают разработку новых технологий и создание условий, при которых металл может оксидировать без дополнительных затрат энергии.

Один из новых методов предусматривает синтез оксида алюминия высокой чистоты методом каталитического окисления металла кислородом воды с применением ультразвуковых колебаний, разработку автокаталитического способа получения субмикронного порошка с последующим формирование брикет высокой плотности.

Сплавы с магнием и кремнием

Такие материалы чаще всего применяются в машиностроении и в строительстве. Mg2Si делают сплавы этой разновидности очень прочными. Иногда составляющим подобных элементов является и медь. Ее также вводят в сплав для упрочения. Однако добавляют медь в такие материалы в очень небольших количествах. Иначе антикоррозийные свойства алюминиевого сплава могут сильно понизиться. Межкристаллическое ржавление в них начинается уже при добавлении свыше 0.5% меди.

Также склонность к коррозии у таких материалов может возрастать при неоправданном увеличении количества входящего в их состав кремния. Это вещество добавляют в алюминиевые сплавы обычно в таких пропорциях, чтобы после образования Mg2Si не оставалось ничего лишнего. Кремний в чистом виде содержат лишь некоторые материалы этой разновидности.

Как очистить алюминий от окиси в домашних условиях

Алюминий подвержен окислению. При эксплуатации изделий слой окисла растет, что приводит к появлению темных пятен, которые покрывают всю поверхность или отдельные детали.

Чистить окись и черноту можно дома доступными народными средствами:

  1. Сода. Растворите средство в небольшом количестве воды для получения кашицы. Нанесите смесь на пятно и обработайте поверхность круговыми движениями.
  2. «Кока-Кола». Залейте предмет газировкой и через 1,5 часа вымойте его водой.
  3. Щавель. В емкость, требующую очистки, выложите пучок свежего щавеля и залейте водой. Поставьте посуду на плиту и прокипятите смесь на слабом огне 30 минут. Слейте раствор и прополощите изделие.
  4. Лимонная кислота. В кастрюле соедините 2 ст. л. лимонной кислоты и 1 л воды. Прокипятите раствор 15-25 минут в зависимости от степени загрязнения, а затем вымойте емкость чистой водой.
  5. Яблоко. Натрите потемневший окисленный след половинкой фрукта и оставьте на полчаса, чтобы яблочная кислота подействовала. По истечении времени вымойте емкость моющим средством.

Пищевая сода эффективно борется с окислом и темными пятнами на алюминиевых поверхностях. Продукт подходит для локального применения или масштабной чистки крупногабаритных изделий

Горчичный порошок, уксус и соль

Для удаления черноты с наружных стенок изделия приготовьте смесь из равных частей поваренной соли, уксуса и сухого горчичного порошка. Перемешайте компоненты до однородной консистенции. При помощи губки нанесите смесь на загрязнения и через 15 минут смойте теплой водой.

Поваренная соль

Для очистки алюминия соедините 2 ст. л. соли и 1 ч. л. теплой воды. Смешайте компоненты и нанесите на губку. Вотрите смесь в место загрязнения, оставьте на полчаса, а затем вымойте кастрюлю.

Солевой раствор – безопасное средство для чистки алюминия, которое расщепляет загрязнения, выводит черноту и помогает справиться с нагаром

Кислоты

Для очистки алюминиевых изделий используйте продукты, содержащие натуральные кислоты: кефир, лимонный сок, простоквашу, огуречный рассол. Залейте выбранным средством емкость или деталь и оставьте на ночь. Утром прополощите изделие и вытрите насухо.

Избавиться от значительного почернения помогут очищающие средства на основе щавелевой кислоты. Нанесите препарат на поверхность, выждите время, указанное на упаковке, а затем смойте водой.

Винный камень

Оттереть потемнения можно при помощи винного камня. Для проведения чистки в 5 л теплой воды растворите 3 ст. л. средства и в полученном растворе замочите изделие на 2-3 часа. Удалите остатки грязи мягкой губкой, прополощите теплой водой и вытрите насухо.

Потемнения, грязные подтеки, нагар и прочие загрязнения портят эстетический вид алюминиевых изделий. Справиться с проблемами можно в домашних условиях, используя народные средства или специальную бытовую химию

Методы защиты от коррозии

Особенно сильно коррозия проявляет себя во влажной среде, а так же при появлении т.н. «блуждающих» токов

Именно поэтому очень важно защищать поверхность алюминия с помощью покраски, анодировки, а стальные изделия, соприкасающиеся с ним необходимо оцинковывать, эмалировать или хотя бы обрабатывать грунтовкой в несколько слоев. Крепеж, применяемый в производстве алюминиевых конструкций должен быть как минимум оцинкованным, но желательно, а для фасадных конструкций просто необходимо, использовать крепеж из нержавеющей стали

Для антикоррозионной защиты алюминиевых конструкций применяют следующие методы:

Порошковая окраска

Порошковое покрытие представляет собой напыленный на поверхность изделия полимерный порошок, который запекается (полимеризуется) в специальной печи при определенной температуре, как правило 180-220°С. Технология порошковой покраски состоит из трех этапов:

  1. Поверхность алюминиевого профиля обезжиривают и удаляют с нее все загрязнения
  2. Напыляют слой порошковой краски
  3. Запекание (полимеризация) порошкового покрытия в печи.

Порошковая покраска алюминиевого профиля и фурнитуры для светопрозрачных конструкций не только защищает металл от коррозии, но так же позволяет покрасить конструкцию в любой цвет по шкале RAL.

Анодирование профиля

Анодированое покрытие – это покрытие, которое создает на поверхности профиля устойчивую и не растворимую в агрессивных средах плёнку из окисла алюминия.

Анодирование позволяет создать такую равномерную толщину плёнки нерастворимой окиси на поверхности, которая уже не позволит контактировать алюминию с внешней средой и происходить дальнейшему окислению.

Технология построена таким образом:

  • Сначала профиль обезжиривают в кислоте (например, щавелевой).
  • Промывают в чистой воде.
  • Далее травление в щелочи для вытравливания поверхностных неравномерно окисленных слоев металла, вместе с которыми снимаются все инородные включения на поверхности.
  • Промывка в чистой воде.
  • Профиль погружается в ванну с раствором электролита. Здесь в течение 0,5-1,5 часов он подвергается анодированию. На поверхности профиля образуется пленка оксида алюминия.
  • Далее для получения цветного анодирования профиль перемещается в ванну с раствором соли какого-либо металла через которые снова пропускается ток. Цветные оттенки профиля зависят от продолжительности обработки. Минимально профиль обрабатывают 45 секунд (светлое шампанское), максимально – 15 минут (черный).
  • Изолирование (Ванна упрочнения поверхности) – процесс химического замещения, при котором окисел на поверхности металла превращается в химически более прочную гидратную форму, более устойчивую к воздействию окружающей среды и химических веществ. Покрытие приобретает особую прочность, стойкость к механическим повреждениям.
  • В заключение проводится сушка и упаковка.

Защита от контакта с другими металлами

Для того, чтобы алюминий не соприкасался с металлами, с которыми он может составить гальваническую пару, необходимо применять весь крепеж только из нержавеющей или оцинкованной стали.

Все стальные элементы, на которые монтируется конструкция – кронштейны, опорные узлы, анкерные пластины и т.д. – должны быть оцинкованы или прогрунтованны в несколько слоев. Так же для устранения прямого контакта алюминия и стали применяют паронитовые, резиновые, битумные прокладки.

Алюминиевый профиль и фурнитура не должны непосредственно соприкасаться с деревом, цементом, камнем, кирпичом, бетоном, и т. д., особенно в условиях повышенной влажности. Во избежание коррозии в этих случаях необходимо тщательно покрывать эти материалы битумом или другим изоляционным материалом, деревянные детали необходимо пропитывать лаком.

Рис.3. Пример оцинкованного кронштейна с нержавеющим крепежом

Спасти алюминий

Современное автомобилестроение немыслимо без использования алюминиевых материалов. Далее мы будем использовать термин «алюминий», подразумевая не чистый металл, а конструкционные сплавы на его основе.

Первые автомобили Land Rover имели алюминиевые кузова, а множество Defender со стальной рамой и алюминиевыми панелями и сейчас колесит по дорогам всего мира. Многие модели Audi, Jaguar, Volvo, BMW, пикапы Mazda и других авто имеют детали из алюминия. И уж конечно, системы охлаждения двигателя и кондиционирования без алюминия немыслимы.

«Алюминий не ржавеет» – эту фразу мы помним со школы. А еще нам говорили, что на воздухе изделия из алюминиевых сплавов самопроизвольно покрываются тончайшей оксидной пленкой Al2O3 – она-то и предохраняет их от дальнейших коррозионных атак. Поэтому хозяйки пользуются алюминиевой посудой десятилетиями.

Авиационные материалы для защиты алюминиевых деталей, прототипы Dinitrol 713 IQ

Все верно. Но в машиностроении картина гораздо сложнее. Вибрации, перепады температур, влажная и химически агрессивная среда (вспомним хотя бы солевые растворы на дорогах) – эти и другие факторы повреждают «природную» защитную пленку и препятствуют ее восстановлению.

В местах контакта алюминиевого сплава со сталью (а в большинстве конструкций это неизбежно) возникают гальванические пары. Поскольку алюминий более активный металл, чем железо, электрохимическая коррозия разъедает именно его. Так что алюминиевая трубка со стальным штуцером не такая уж безобидная вещь. Гальванические пары образуются и в зонах сварных швов. А вслед за электрохимической коррозией приходит межкристаллитная, разрушающая границы зерен металла.

Dinitrol 713 IQ создает легкую прозрачную пленку толщиной всего 15 мкм, которая прекрасно пропускает тепло, не снижая эффективности теплообменника

Главная опасность межкристаллитной коррозии в том, что она существенно снижает прочность и другие механические характеристики изделия при неизменном внешнем виде. А нагрузи деталь чуть сильнее – рассыплется в порошок.

К сожалению, в данном случае практика подтверждает теорию. Ежегодно дилерские сервисы меняют множество теплообменников, изготовленных из «крылатого металла».

Препараты для защиты авиационных сплавов маркируются индексом AV, например, AV‑15. В Швеции их применяли для антикоррозионной защиты радиаторов автомобилей Mercedes. Так сугубо авиационный состав приобрел автомобильный опыт. Защита оказалась настолько эффективной, что на основе AV‑15 был создан препарат Dinitrol 713 IQ – специальный антикор для автомобильных узлов и деталей из алюминия. Впрочем, он умеет защищать и медь, и бронзу, и латунь, и нержавеющую сталь, которая на самом деле тоже не вечна.

«Семьсот тринадцатый» перенял все достоинства «летающего брата» AV‑15, а именно:

– уникальную способность беречь алюминиевые сплавы (авиация!), что достигается за счет особых ингибиторов;

– создавать на поверхности очень легкую (снова авиация!) и тонкую прозрачную пленку – ее толщина всего 15 мкм, и, кстати, она прекрасно пропускает тепло, не снижая эффективности защищаемого теплообменника;

– технологичность нанесения (опять же авиация!).

Говоря о технологичности, подчеркнем, что материал Dinitrol 713 IQ – так называемый одношаговый, не требующий предварительного грунтования. Он «сам себе режиссер»: проникает во все щели и прочие труднодоступные участки конструкции и обеспечивает собственную адгезию. Наносится с помощью кисти, распылением из пистолета или же окунанием.

При необходимости ремонта системы кондиционирования пленка Dinitrol 713 IQ смывается горячей водой под давлением – для этого достаточно обычного моечного аппарата. А при эксплуатации автомобиля защитную пленку рекомендуется регулярно обновлять, например, перед каждой зимой.

Теперь слово за мастерами станций технического обслуживания. Если они вооружатся Dinitrol 713 IQ, число поломок кондиционеров пойдет на убыль. А народ быстро сообразит, что лучше заплатить за обработку, чем менять дорогущие узлы кондиционера.

Методы защиты от коррозии

Особенно сильно коррозия проявляет себя во влажной среде, а так же при появлении т.н. «блуждающих» токов

Именно поэтому очень важно защищать поверхность алюминия с помощью покраски, анодировки, а стальные изделия, соприкасающиеся с ним необходимо оцинковывать, эмалировать или хотя бы обрабатывать грунтовкой в несколько слоев. Крепеж, применяемый в производстве алюминиевых конструкций должен быть как минимум оцинкованным, но желательно, а для фасадных конструкций просто необходимо, использовать крепеж из нержавеющей стали

Для антикоррозионной защиты алюминиевых конструкций применяют следующие методы:

Порошковая окраска

Порошковое покрытие представляет собой напыленный на поверхность изделия полимерный порошок, который запекается (полимеризуется) в специальной печи при определенной температуре, как правило 180-220°С.
Технология порошковой покраски состоит из трех этапов:

  1. Поверхность алюминиевого профиля обезжиривают и удаляют с нее все загрязнения
  2. Напыляют слой порошковой краски
  3. Запекание (полимеризация) порошкового покрытия в печи.

Порошковая покраска алюминиевого профиля и фурнитуры для светопрозрачных конструкций не только защищает металл от коррозии, но так же позволяет покрасить конструкцию в любой цвет по шкале RAL.

Анодирование профиля

Анодированое покрытие – это покрытие, которое создает на поверхности профиля устойчивую и не растворимую в агрессивных средах плёнку из окисла алюминия.

Анодирование позволяет создать такую равномерную толщину плёнки нерастворимой окиси на поверхности, которая уже не позволит контактировать алюминию с внешней средой и происходить дальнейшему окислению.

Технология построена таким образом:

  • Сначала профиль обезжиривают в кислоте (например, щавелевой).
  • Промывают в чистой воде.
  • Далее травление в щелочи для вытравливания поверхностных неравномерно окисленных слоев металла, вместе с которыми снимаются все инородные включения на поверхности.
  • Промывка в чистой воде.
  • Профиль погружается в ванну с раствором электролита. Здесь в течение 0,5-1,5 часов он подвергается анодированию. На поверхности профиля образуется пленка оксида алюминия.
  • Далее для получения цветного анодирования профиль перемещается в ванну с раствором соли какого-либо металла через которые снова пропускается ток. Цветные оттенки профиля зависят от продолжительности обработки. Минимально профиль обрабатывают 45 секунд (светлое шампанское), максимально — 15 минут (черный).
  • Изолирование (Ванна упрочнения поверхности) — процесс химического замещения, при котором окисел на поверхности металла превращается в химически более прочную гидратную форму, более устойчивую к воздействию окружающей среды и химических веществ. Покрытие приобретает особую прочность, стойкость к механическим повреждениям.
  • В заключение проводится сушка и упаковка.

Защита от контакта с другими металлами

Для того, чтобы алюминий не соприкасался с металлами, с которыми он может составить гальваническую пару, необходимо применять весь крепеж только из нержавеющей или оцинкованной стали.

Все стальные элементы, на которые монтируется конструкция – кронштейны, опорные узлы, анкерные пластины и т.д. – должны быть оцинкованы или прогрунтованны в несколько слоев. Так же для устранения прямого контакта алюминия и стали применяют паронитовые, резиновые, битумные прокладки.

Рис.3. Пример оцинкованного кронштейна с нержавеющим крепежом

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Домашний дизайнер
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector