Особенности патронов для сверлильных станков с конусом морзе

Общие сведения

Применение сверлильных станков обуславливает необходимость создания в заготовках различного размера отверстий желаемой величины. Эта филигранная работа производится методом сверления. Строение сверлильного станка простое, но даже настроенное оборудование не может функционировать без патрона для сверлильного станка. Его задача заключается в надежном закреплении самого сверла и равномерной передаче на него усилия двигателя.

Изделия применяются не только на неподвижном сверлильном оборудовании, особенно больших размеров, их мастера встречают в обычных дрелях, даже миниатюрный шуруповерт оснащается этим крепежным элементом. Согласно стандартам, перед работой подбор изделия выполняется путем сравнивания его свойств со следующими пунктами:

  • подобрать правильную жесткость изделия, это обеспечит надежность закрепления сверла;
  • проверить, насколько соответствует типоразмер радиальному биению;
  • толщина используемого сверла во многом обуславливает выбор патрона;
  • сверло и использующийся патрон должны подходить под материал заготовки.

Если пренебречь жесткостью материала, нагрузка в процессе работы на сверло возрастет, это приведет к его поломке, перегреву и нарушению целостности патрона. В худшем случае это приведет к неполадке самого устройства.


Устройство сверильного станка

Особенности конструкции и основные типы конусов Морзе

Есть версия, что коническая конструкция появилась в результате постепенной эволюции токарного, фрезерного и сверлильного инструмента в результате изучения влияния износа инструмента на его характеристики и качество выпускаемых деталей. Было замечено, что в процессе работы инструмент с цилиндрическим хвостовиком изнашивался и начинал проворачиваться в кулачках, возникали биения и отклонения инструмента.

Наиболее оптимальной формой, позволяющей с максимальной точностью закрепить инструмент в станке, обеспечить быструю смену инструмента без отклонений, а так же обеспечить подачу СОЖ (смазочно-охлаждающей жидкости) к рабочей части инструмента является конус.

В процессе развития технологий машиностроения появился так называемый метрический конус, который отличается от своих предшественников постоянной конусностью и угловыми размерами. Его конусность составляет 1:20, уклон – 1°51’56”, а угол – 1°51’51”, тогда как до этого конусность была переменной и варьировалась от 1:19,002 до 1:20,047.

Согласно классификации, принятой в ГОСТах СССР конусы Морзе принято разделять на малые, большие и общего применения.

Исходя из особенностей конструкции, на сегодняшний день различают три типа конусов Морзе:

Выпадение инструмента из шпинделя предотвращается самой конической формой хвостовика и отверстия в шпинделе или оправке. Дополнительно крепление хвостовика с лапкой в шпинделе происходит за счет вхождения лапки в специальный паз, резьбового – за счет резьбы в торце хвостовика.

Так же изготавливают инструмент с дополнительными пазами и отверстиями для подведения СОЖ. Это наиболее актуально для современных станков с ЧПУ.

MT5-MT3 втулка переходная с конуса Морзе на конус Морзе, без выколотки

  • — До Москвы 1-3 дня
  • — До СПб 2-4 дня
  • — По РФ и СНГ 5-10 дней
  • — Безналичный расчет
  • — Банковские карты
  • — Оплата по QR-коду
  • Описание
  • Оплата и доставка
  • Подходящие товары

Втулка переходная цилиндрическая с конусом Морзе. Без выколотки.

Переходник MT5-MT3 с конуса Морзе 5 на конус Морзе 3, без лапки, используется для фрез, сверл. Инструмент заменяется выдавливанием.

К этому товару подходят:

Оплата заказа

Вы сможете осуществить оплату заказа любым удобным способом:

  • Безналичный расчет. Для юридических лиц и ИП доступна оплата по безналичному расчету путем перечисления денежных средств с расчетного счета покупателя на наш расчетный счет. При этом при отгрузке мы предоставляем весь пакет документов (счёт на оплату, счёт-фактуру, товарную накладную, договор поставки). При оформлении заказа на сайте необходимо выбрать этот способ оплаты и заполнить реквизиты организации или прислать их нам по почте.
  • Банковская карта. Вы можете оплатить заказ картой Visa, Мир и MasterCard в процессе оформления заказа на сайте. Ссылку для оплаты через защищенный сервис PayMaster мы отправляем после обработки заказа и проверки наличия нужных товаров на складе.
  • Оплата по QR-коду. Вы можете оплатить заказ по счету с QR-кодом, отсканировав его в мобильном приложении банка или в отделениях банков.

Доставка

Доставка инструмента осуществляется в города Российской Федерации и СНГ. Вы можете выбрать наиболее удобный для Вас вариант доставки из списка:

  • Экспресс-доставка курьерской службой СДЭК. Доставка осуществляется «до двери». Расчет стоимости доставки осуществляется в режиме реального времени на странице оформления заказа. Срок доставки от 2-5 дней в зависимости от региона пункта назначения. Стоимость доставки от 470 до 700 рублей в зависимости от пункта назначения.
  • Доставка транспортными компаниями. «Деловые линии», «ТК Энергия», » GTD» и т.д.. Необходимо выбрать при оформлении заказа способ доставки «обсудить с менеджером». После оформления заказа с вами свяжется менеджер для уточнения удобной для Вас транспортной компании.
  • Доставка почтой России. По желанию покупателя доставка груза может быть произведена Почтой России.

инструментальные конусы существуют двух типов — с лапкой и без лапки.

Конусы Морзе с лапкой бывают семи размеров, обозначаемых № 0, 1, 2, 3, 4, 5 и 6, и метрические, обозначаемые № 80, 100, 120, 160 и 200.

Конусы Морзе без лапки и метрические бывают тех же номеров, как и конусы с лапкой. Кроме того, существуют метрические конусы без лапки — № 4 и 6.

Наименьший конус Морзе № 0, а наибольший — № 6. Первые конусы Морзе изготовлялись в дюймовой системе, поэтому размеры их при переводе на метрические меры выражаются дробными числами.

Например, у конуса Морзе № 2 с лапкой D = 17,980 мм, d = 14,059 мм и l = 78,5 мм. Углы уклона у всех конусов различны, но колеблются в довольно узких пределах, от 1° 25′ 43″ у конуса № 1 до 1° 30′ 26″ у конуса № 5.

Неодинакова также и их конусность, которая колеблется в пределах от 0,04988 у конуса № 1 до 0,05263 у конуса № 5. Самый маленький метрический конус имеет № 4, самый большой — № 200. Номер конуса равен количеству миллиметров, содержащихся в большем диаметре данного конуса.

Например, у метрического конуса № 80 больший диаметр равен 80 мм. Углы уклона метрических конусов всех размеров и конусность их постоянны, а именно: α = 1° 25′ 56″, К = 1 : 20 = 0,05.

Точение конуса на токарном станке

1. Точение конической поверхности при повороте поперечногосуппорта

при ручной подаче, как показано на рисунке 20а. Угол поворота определяют по формуле:

tg  = (D – d)/2l, где D и d – диаметры конуса, мм; l – длина конуса, мм. Этим методом обрабатываются как наружные, так и внутренние конические поверхности.

2. Точение конусов широким резцом

при поперечной подаче (рисунок 20б). Этот способ применяется при обработке конических поверхностей небольшой длины. Ширина резца должна немного превышать длину обрабатываемой поверхности.

3. Точение конусов при поперечном смещении корпуса задней бабки

показано на рисунке 20в. Таким способом обрабатываются длинные детали с небольшой конусностью (  8 о ). Величина смещения задней бабки от оси

h = L(D – d)/2l, где l – длина детали, мм.

4. Точение конусов при помощи копировальной

(конусной)линейки показано на рисунке 20г. Таким способом обрабатываются конусные детали большой длины. Для этого на кронштейне, прикреплённом к станине, располагают линейку с ползуном, которая кинематически связана с поперечным суппортом станка.

Рисунок 20 – Способы обработки конических поверхностей.

Точение конической поверхности с поворотом поперечного суппорта и ручной подачи (а)

1 – ось поворота поперечного суппорта; 2 – рукоятка ручной подачи.

Точение конусов широким резцом (б). Точение конусов при поперечном смещении корпуса задней бабки (в). Точение конусов при помощи копировальной (конусной) линейки (г)

1, 5 – болты крепления линейки; 2 – кронштейн; 3 – копировальная линейка; 4 – ползун; 6 – тяга; 7 – станина; 8 – деталь; 9 – поперечный суппорт

Кинематическая схема токарно-винторезного станка 1к62

При анализе кинематических схем металлорежущих станков различают главное рабочее движение

идвижение подачи .

Главное рабочее движение

. Привод главного движения – коробка скоростей имеет 6 валов. Вал I (рисунок 21) приводится в движение электродвигателем

(N = 10 кВт, n = 1450 об/мин) через клиноремённую передачу со шкивами диаметром 142 и 254 мм. На этом валу размещается пластинчатая фрикционная муфта М1, переключение которой реверсирует вращение шпинделя. При включении муфты влево вращение с вала I на вал II передаётся через шестерни 56 – 34 или 51 – 39, а при включении муфты вправо – через шестерни 50 – 24 и 36 – 38. В последнем случае передача движения осуществляется через блок промежуточных (паразитных) шестерён 24 – 36, которые изменяют направление движения вала II, и, следовательно, направление вращения шпинделя.

При включении муфты влево обеспечивается прямое вращение шпинделя – по часовой стрелке при взгляде с его нерабочей стороны, при включении вправо – обратное вращение. Реверсирование движения шпинделя необходимо для проведения тяжёлых отрезных работ (большие диаметры, твёрдые материалы) при обратном вращении шпинделя, а также для извлечения инструмента, закреплённого в задней бабке, при обработке отверстий. В дальнейшем будет рассматриваться только прямой рабочий ход.

С вала II на вал III вращение передаётся через шестерни 29 – 47; 21 – 55; 38 – 38. С вала III движение может непосредственно передаваться через шестерни 65 – 43 на вал VI – шпиндель, обеспечивая таким образом, 6 самых высоких частот его вращения.

С другой стороны, движение с вала III может передаваться на вал IV через шестерни 22 – 88 или 45 – 45, а с вала IV на вал V через шестерни 22 – 88 или 45 – 45 и далее 27 – 54 на шпиндель. Валы IV и V являются системой перебора. Благодаря этой системе шпиндель получает ещё 24 частоты вращения, итого – 30.

Фактически станок имеет 23 частоты вращения, так как при некоторых передачах скорости дублируются.

Уравнение кинематической цепи главного движения в общем виде выглядит так:

где nшп – частота вращения шпинделя, об/мин; nэд – частота вращения электродвигателя, об/мин; dэд – диаметр шкива на валу I, мм;  — коэффициент проскальзывания клиноремённой передачи (  0,01  0,015); i – передаточное отношение передачи с одного вала на другой.

Движение подачи

содержит:

— звено увеличения шага;

Основные сведения о хвостовиках и их обозначение

Существует несколько видов исполнения инструментального конуса. Он может содержать резьбу, лапку или обходиться без них.

В его торце может быть нарезана резьба, которую делают для закрепления инструмента на шпинделе с использованием штревеля. Это специальный шток, предотвращающий выпадение инструмента. Также с его помощью изделие можно извлечь, если его случайным образом заклинит в шпинделе.

Если хвостовик изготовлен с лапкой, то она удерживает инструмент в шпинделе за счет того, что закреплена в специальном пазу. Лапка имеет два предназначения, с ее помощью легче достать изделие из шпинделя, а также создается жесткая фиксация и не будет проворачивания.

Также можно встретить исполнение с несколькими канавками и отверстиями. Они имеют разную глубину и размеры. Их задача – подводить к режущему инструменту смазочно-охлаждающую жидкость.

Хвостовики инструмента бывают различной конструкции и обозначаются буквенным кодом. Ниже приведена их расшифровка:

  • BI – внутренний, имеется паз;
  • ВЕ – наружный, имеется лапка;
  • AI – внутренний, имеется отверстие по оси;
  • АЕ – наружный, имеется отверстие по оси с резьбой;
  • BIK – внутренний, имеются паз и отверстие для подачи смазочно-охлаждающей жидкости (СОЖ);
  • ВЕК – наружный, имеется лапка и отверстие для подачи СОЖ;
  • AIK – внутренний, содержит отверстия по оси и для подачи СОЖ;
  • АЕК – наружный, содержит отверстие по оси с резьбой и отверстие для подачи СОЖ.

Наружный и внутренний соответствуют своим названиям. В зависимости от используемого инструмента, следует выбирать исполнение наружное или внутреннее.

Конус Морзе и метрический конус

Конус Морзе № 2 (MT2).

Схема инструментального конуса (наружные конусы с лапкой, наружные конусы без лапки, внутренние конусы (гнёзда)).

Конус Морзе — одно из самых широко применяемых креплений инструмента. Был предложен Стивеном А. Морзе приблизительно в 1864 году.

Конус Морзе подразделяется на восемь размеров, от КМ0 до КМ7 (англ. Morse taper, MT0-MT7, нем. Morsekegel, MK0-MK7). Конусность от 1:19,002 до 1:20,047 (угол конуса от 2°51’26″ до 3°00’52″, уклон конуса от 1°25’43″ до 1°30’26″) в зависимости от типоразмера.

Стандарты на конус Морзе: ISO 296, DIN 228, ГОСТ 25557-2016 «Конусы инструментальные. Основные размеры.». В российском стандарте конус КМ7 отсутствует, вместо него применяется несовместимый метрический конус № 80. Конусы, изготовленные по дюймовым и метрическим стандартам, взаимозаменяемы во всём, кроме резьбы хвостовика.

Существует несколько исполнений хвостовика конуса: с лапкой, с резьбой и без них. Инструмент с лапкой крепится в шпинделе заклиниванием этой лапки, для чего в рукаве некоторых шпинделей есть соответствующий паз. Лапка предназначена для облегчения выбивания конуса из шпинделя и предотвращения проворачивания. Инструмент с внутренней резьбой фиксируется в шпинделях штоком (штревелем), вворачивающимся в торец конуса. Конусы с резьбой гарантируют невыпадение инструмента и облегчают извлечение заклинившего конуса из шпинделя. Шпиндель обычно делается под один из вариантов фиксации — с лапкой, со штревелем или с фиксацией трением. Поскольку угол конуса меньше чем угол трения, фиксация хвостовика в гнезде может также происходить только за счет сил трения, без использования штревелей и лапок.

Некоторые конусы снабжаются системой отверстий и канавок для подачи смазочно-охлаждающей жидкости (СОЖ).

Метрический конус

По мере развития станкостроения понадобилось расширить диапазон размеров конусов Морзе как в большую, так и в меньшую стороны. При этом, для новых типоразмеров конуса, выбрали конусность ровно 1:20 (угол конуса 2°51’51″, уклон конуса 1°25’56″) и назвали их метрическими конусами (англ. Metric Taper). Типоразмер метрических конусов указывается по наибольшему диаметру конуса в миллиметрах. ГОСТ 25557-2016 также определяет уменьшенные метрические конуса № 4 и № 6 (англ. ME4, ME6) и большие метрические конуса № 80, 100, 120, 160, 200 (англ. ME80 — ME200).

Конструктивных различий между конусом Морзе и метрическим нет.

Таблица 1

Обозначение конуса Конусность D D1 d d1 d2 d3 max d4 max d5 l1 max l2 max l3 max l4 max l5 min l6 Метрический № 4 1:20 4 4,1 2,9 – – – 2,5 3 23 25 – – 25 21

№ 6 1:20 6 6,2 4,4 – – – 4 4,6 32 35 – – 34 29

Морзе КМ 0 1:19,212 9,045 9,2 6,4 – 6,1 6 6 6,7 50 53 56,3 59,5 52 49

КМ 1 1:20,047 12,065 12,2 9,4 M6 9 8,7 9 9,7 53,5 57 62 65,5 56 52

КМ 2 1:20,020 17,780 18 14,6 M10 14 13,5 14 14,9 64 69 75 80 67 62

КМ 3 1:19,992 23,825 24,1 19,8 M12 19,1 18,5 19 20,2 80,1 86 94 99 84 78

КМ 4 1:19,254 31,267 31,6 25,9 M16 25,2 25,2 24 26,5 102,5 109 117,5 124 107 98

КМ 5 1:19,002 44,399 44,7 37,6 M20 36,5 35,7 35,7 38,2 129,5 136 149,5 156 135 125

КМ 6 1:19,180 63,348 63,8 53,9 M24 52,4 51 51 54,6 182 190 210 218 188 177

КМ 7 1:19,231 83,058

285.75

294.1

Метрический № 80 1:20 80 80,4 70,2 M30 69 67 67 71,5 196 204 220 228 202 186

№ 100 1:20 100 100,5 88,4 M36 87 85 85 90 232 242 260 270 240 220

№ 120 1:20 120 120,6 106,6 M36 105 102 102 108,5 268 280 300 312 276 254

№ 160 1:20 160 160,8 143 M48 141 138 138 145,5 340 356 380 396 350 321

№ 200 1:20 200 201 179,4 M48 177 174 174 182,5 412 432 460 480 424 388

  1. В ГОСТ 25557 абберевиатура КМ отсутствует, типоразмер обозначен только цифрой
  2. Отсутствует в ГОСТ 25557

Укороченные конуса Морзе

Для многих применений длина конуса Морзе оказалась избыточной. Поэтому были придуманы девять типоразмеров укороченных конусов Морзе, полученных «удалением» примерно половины исходных конусов. Цифра в обозначении укороченного конуса — округлённый диаметр новой толстой части конуса в мм. Российский стандарт на укороченные конуса ГОСТ 9953-82 «Конусы инструментов укороченные. Основные размеры.». В скобках приведены обозначения по старому ГОСТ 9953-67 (с буквой a конуса, у которых осталась более тонкая часть, а с буквой b — более толстая).

  • B7 (0a) — укороченный до 14 мм КМ0.
  • B10 (1a), B12 (1b) — укороченный до 18 и 22 мм соответственно КМ1.
  • B16 (2a), B18 (2b) — укороченный до 24 и 32 мм соответственно КМ2.
  • B22 (3a), B24 (3b) — укороченный до 45 и 55 мм соответственно КМ3.
  • B32 (4b) — укороченный до 57 мм КМ4.
  • B45 (5b) — укороченный до 71 мм КМ5.

Общие требования

Основными эксплуатационными условиями, определяющими эффективное использование сверлильных патронов в соответствующем оборудовании, являются:

  1. Жёсткость крепления, которая не должна зависеть от числа оборотов, развиваемых шпинделем.
  2. Отсутствие радиального биения сверла в пределах допустимых подач и твёрдости обрабатываемого материала.
  3. Удобство установки в шпиндель станка.
  4. Наличие дополнительных функциональных возможностей (например, подачи смазочно-охлаждающей жидкости к зоне сверления).

Жёсткость крепления всегда соотносится с материалом сверла и его свободной длиной. Например, для твердосплавных свёрл, устойчивость которых от продольного изгиба крайне мала, сверлильный патрон должен обеспечивать возможность своего самоцентрирования. Вторая задача жёсткости – обеспечить максимально возможные нагрузки на инструмент без риска его поломки.

Опасность радиального биения особо возрастает, если сверлению подвергают твёрдые и пористые материалы. В этих случаях сверло также теряет свою продольную устойчивость, и может вызвать неисправимый брак при сверлении.

В условиях частых переналадок универсального металлорежущего оборудования (к которому относится и любой сверлильный станок) сокращение подготовительно-заключительного времени – важный источник снижения трудоёмкости операции. При сверлении труднообрабатываемых материалов, а также при значительной глубине получаемого отверстия процесс часто приходится прерывать из-за необходимости охлаждения сверла. С этой целью конструкции современных сверлильных патронов предусматривают подачу смазочно-охлаждающих технологических сред (СОЖ) непосредственно во время проведения операции.

При производстве крепёжных узлов используются только определённые марки сталей. Чаще используется сталь 40Х по ГОСТ 4543-91, хотя в ряде зарубежных конструкций применяются и нержавеющие стали. Детали, предназначенные для непосредственного зажима сверла в патроне, изготавливаются из среднеуглеродистых сталей с термообработкой «улучшение», или из цементированных сталей. Поверхность сверлильных патронов отечественного производства, с целью повышения антикоррозионных характеристик, подвергают воронению.

Далее рассматриваются конструкции патронов, получивших наибольшее распространение.

Конус Морзе и метрический конус

Конус Морзе № 2 (MT2).

Схема инструментального конуса (наружные конусы с лапкой, наружные конусы без лапки, внутренние конусы (гнёзда)).

Конус Морзе — одно из самых широко применяемых креплений инструмента. Был предложен Стивеном А. Морзе приблизительно в 1864 году.

Конус Морзе подразделяется на восемь размеров, от КМ0 до КМ7 (англ. Morse taper, MT0-MT7, нем. Morsekegel, MK0-MK7). Конусность от 1:19,002 до 1:20,047 (угол конуса от 2°51’26″ до 3°00’52″, уклон конуса от 1°25’43″ до 1°30’26″) в зависимости от типоразмера.

Стандарты на конус Морзе: ISO 296, DIN 228, ГОСТ 25557-2016 «Конусы инструментальные. Основные размеры.». В российском стандарте конус КМ7 отсутствует, вместо него применяется несовместимый метрический конус № 80. Конусы, изготовленные по дюймовым и метрическим стандартам, взаимозаменяемы во всём, кроме резьбы хвостовика.

Существует несколько исполнений хвостовика конуса: с лапкой, с резьбой и без них. Инструмент с лапкой крепится в шпинделе заклиниванием этой лапки, для чего в рукаве некоторых шпинделей есть соответствующий паз. Лапка предназначена для облегчения выбивания конуса из шпинделя и предотвращения проворачивания. Инструмент с внутренней резьбой фиксируется в шпинделях штоком (штревелем), вворачивающимся в торец конуса. Конусы с резьбой гарантируют невыпадение инструмента и облегчают извлечение заклинившего конуса из шпинделя. Шпиндель обычно делается под один из вариантов фиксации — с лапкой, со штревелем или с фиксацией трением. Поскольку угол конуса меньше чем угол трения, фиксация хвостовика в гнезде может также происходить только за счет сил трения, без использования штревелей и лапок.

Некоторые конусы снабжаются системой отверстий и канавок для подачи смазочно-охлаждающей жидкости (СОЖ).

Метрический конус

По мере развития станкостроения понадобилось расширить диапазон размеров конусов Морзе как в большую, так и в меньшую стороны. При этом, для новых типоразмеров конуса, выбрали конусность ровно 1:20 (угол конуса 2°51’51″, уклон конуса 1°25’56″) и назвали их метрическими конусами (англ. Metric Taper). Типоразмер метрических конусов указывается по наибольшему диаметру конуса в миллиметрах. ГОСТ 25557-2016 также определяет уменьшенные метрические конуса № 4 и № 6 (англ. ME4, ME6) и большие метрические конуса № 80, 100, 120, 160, 200 (англ. ME80 — ME200).

Конструктивных различий между конусом Морзе и метрическим нет.

Таблица 1

Обозначение конуса Конусность D D1 d d1 d2 d3 max d4 max d5 l1 max l2 max l3 max l4 max l5 min l6 Метрический № 4 1:20 4 4,1 2,9 – – – 2,5 3 23 25 – – 25 21

№ 6 1:20 6 6,2 4,4 – – – 4 4,6 32 35 – – 34 29

Морзе КМ 0 1:19,212 9,045 9,2 6,4 – 6,1 6 6 6,7 50 53 56,3 59,5 52 49

КМ 1 1:20,047 12,065 12,2 9,4 M6 9 8,7 9 9,7 53,5 57 62 65,5 56 52

КМ 2 1:20,020 17,780 18 14,6 M10 14 13,5 14 14,9 64 69 75 80 67 62

КМ 3 1:19,992 23,825 24,1 19,8 M12 19,1 18,5 19 20,2 80,1 86 94 99 84 78

КМ 4 1:19,254 31,267 31,6 25,9 M16 25,2 25,2 24 26,5 102,5 109 117,5 124 107 98

КМ 5 1:19,002 44,399 44,7 37,6 M20 36,5 35,7 35,7 38,2 129,5 136 149,5 156 135 125

КМ 6 1:19,180 63,348 63,8 53,9 M24 52,4 51 51 54,6 182 190 210 218 188 177

КМ 7 1:19,231 83,058

285.75

294.1

Метрический № 80 1:20 80 80,4 70,2 M30 69 67 67 71,5 196 204 220 228 202 186

№ 100 1:20 100 100,5 88,4 M36 87 85 85 90 232 242 260 270 240 220

№ 120 1:20 120 120,6 106,6 M36 105 102 102 108,5 268 280 300 312 276 254

№ 160 1:20 160 160,8 143 M48 141 138 138 145,5 340 356 380 396 350 321

№ 200 1:20 200 201 179,4 M48 177 174 174 182,5 412 432 460 480 424 388

  1. В ГОСТ 25557 абберевиатура КМ отсутствует, типоразмер обозначен только цифрой
  2. Отсутствует в ГОСТ 25557

Укороченные конуса Морзе

Для многих применений длина конуса Морзе оказалась избыточной. Поэтому были придуманы девять типоразмеров укороченных конусов Морзе, полученных «удалением» примерно половины исходных конусов. Цифра в обозначении укороченного конуса — округлённый диаметр новой толстой части конуса в мм. Российский стандарт на укороченные конуса ГОСТ 9953-82 «Конусы инструментов укороченные. Основные размеры.». В скобках приведены обозначения по старому ГОСТ 9953-67 (с буквой a конуса, у которых осталась более тонкая часть, а с буквой b — более толстая).

  • B7 (0a) — укороченный до 14 мм КМ0.
  • B10 (1a), B12 (1b) — укороченный до 18 и 22 мм соответственно КМ1.
  • B16 (2a), B18 (2b) — укороченный до 24 и 32 мм соответственно КМ2.
  • B22 (3a), B24 (3b) — укороченный до 45 и 55 мм соответственно КМ3.
  • B32 (4b) — укороченный до 57 мм КМ4.
  • B45 (5b) — укороченный до 71 мм КМ5.

Формула для определения конусности

Провести самостоятельно расчет конусности можно при применении различных формул. Стоит учитывать, что в большинстве случаев показатель указывается в градусах, но может и в процентах – все зависит от конкретного случая. Алгоритм проведения расчетов выглядит следующим образом:

  1. K=D-d/l=2tgf=2i. Данная формула характеризуется тем, что конусность характеризуется двойным уклоном. Она основана на получении значения большого и меньшего диаметра, а также расстояния между ними. Кроме этого определяется угол.
  2. Tgf=D/2L. В данном случае требуется протяженность отрезка, который связывает большой и малый диаметр, а также показатель большого диаметра.
  3. F=arctgf. Эта формула применяется для перевода показателя в градусы. Сегодня в большинстве случаев применяются именно градусы, так как их проще выдерживать при непосредственном проведении построений. Что касается процентов, то они зачастую указываются для возможности расчета одного из диаметров. К примеру, если соотношение составляет 20% и дан меньший диаметр, то можно быстро провести расчет большого.

Как ранее было отмечено, конусность 1:5 и другие показатели стандартизированы. Для этого применяется ГОСТ 8593-81.

На чертеже вычисления не отображаются. Как правило, для этого создается дополнительная пояснительная записка. Вычислить основные параметры довольно просто, в некоторых случаях проводится построение чертежа, после чего измеряется значение угла и другие показатели.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Домашний дизайнер
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: