Искусственный графит
Графит синтезируют из кокса и пека. Это продукты переработки каменного угля, нефтяных смол, угольного дегтя. На них воздействуют химически и механически при высоких температурах. Исходное сырье предварительно сортируют, затем прокаливают, пропитывают. Получается материал почти абсолютной чистоты.
Искусственный графит применяют везде, от безобидного пластика до ядерного оборудования. Самые востребованные марки:
- аккумуляторный;
- карандашный;
- литейный;
- смазочный;
- электроугольный;
- элементный;
- ядерный.
Под каждую марку, сферу использования графита подбирается точная пропорция пека и кокса.
Отличить рукотворные образцы несложно. Например, по треугольной штриховке на плоскостях. Она есть только у минерала природного происхождения.
Примечания и ссылки
- Это происходит не для всех твердых тел.
- Исследование потери устойчивости гусеницы . Volpe Center, Министерство транспорта США
- Справочник по химии и физике онлайн (издание № 96) .
- Ахмед, Ашраф; Тавакол, Бехруз; Дас, Рони; Ховен, Рональд; Розбехджаван, Пунэ; Минай, Боб (2012). Исследование теплового расширения полимерных композитов, армированных углеродным волокном . Материалы Международного симпозиума SAMPE. Чарльстон, Южная Каролина.
- ↑ Рэймонд Серуэй Джон Джуэтт (2005), Принципы физики: текст, основанный на исчислении , Cengage Learning, с. 506, ISBN 0-534-49143-X .
- «WDSC 340. Заметки о классе по тепловым свойствам древесины» . лесное хозяйство.caf.wvu.edu . Архивировано из оригинала 30 марта 2009 г.
- ↑ Ричард К. Везервакс; Альфред Дж. Штамм (1956). Коэффициенты термического расширения древесины и изделий из дерева (1487). Лаборатория лесных товаров , Лесная служба США.
- «Сапфир» (неопр .) . kyocera.com. Архивировано из оригинала 18 октября 2005 г.
- «Основные параметры карбида кремния (SiC)» (неопр .) . Институт Иоффе.
- Беккер, П.; Сейфрид, П.; Зигерт, Х. (1982). «Параметр решетки высокочистых монокристаллов кремния». Journal of Physics B 48 : 17. Бибкод1982ZPhyB..48…17B . DOI : 10.1007/ BF02026423 .
- Дэвид Р. Лайд (2009). CRC Press Inc, изд. Справочник CRC по химии и физике (Relié ) (на английском языке) (90-е издание). Бока-Ратон. п. 2804. ISBN 978-1-4200-9084-0 .
- Янг; Геллер. Физика Колледжа Янга и Геллера (8-е издание). ISBN 0-8053-9218-1 .
- есть медиафайлы по теме теплового расширения . Университет Западного Вашингтона. Архивировано из оригинала 17 апреля 2009 года.
- ↑ «Свойства обычных жидких материалов» .
- Таблица теплового расширения
Тепловое расширение в природе и технике
Способность тел расширяться во время нагревания и сжиматься во время охлаждения играет очень важную роль в природе. Поверхность Земли прогревается неравномерно. В результате воздух вблизи Земли также расширяется неравномерно, и образуется ветер, предопределяющий изменение погоды. Неравномерное прогревание воды в морях и океанах приводит к возникновению течений, которые существенно влияют на климат. Резкие колебания температуры р горных районах вызывают расширение и сжатие горных пород. А поскольку степень расширения зависит от вида породы, то расширения и сжатия происходят неравномерно, и в результате образуются трещины, которые приводят к разрушению этих пород.
Тепловое расширение приходится принимать во внимание при строительстве мостов и линий электропередач, прокладывании труб отопления, укладке железнодорожных рельсов, изготовлении железобетонных конструкций и во многих других случаях. Явление теплового расширения широко используется в технике и быту
Так, для автоматического замыкания и размыкания электрических цепей используют биметаллические пластинки — они состоят из двух полос с разным коэффициентом линейного расширения (рис. 2.33). Тепловое расширение воздуха помогает равномерно прогреть квартиру, охладить продукты в холодильнике, проветрить комнату
Явление теплового расширения широко используется в технике и быту. Так, для автоматического замыкания и размыкания электрических цепей используют биметаллические пластинки — они состоят из двух полос с разным коэффициентом линейного расширения (рис. 2.33). Тепловое расширение воздуха помогает равномерно прогреть квартиру, охладить продукты в холодильнике, проветрить комнату.
Рис. 2.33. Для изготовления автоматических предохранителей (о), для автоматического включения и выключения нагревательных приборов (б) широко используются биметаллические пластинки (в). Один из металлов при увеличении температуры расширяется намного больше, чем другой, в результате этого пластинка изгибается (г) и электрическая цепь размыкается (или замыкается).
Пример решения задачи
Длина стального железнодорожного рельса при температуре 0°С равна 8 На сколько увеличится его длина в знойный летний день при температуре 40 °С? Анализ условия задачи. Зная, как изменяется длина стальной детали вследствие нагревания на 1 °С, т. е. зная температурный коэффициент линейного расширения стали, мы найдем, на сколько изменится длина рельса вследствие нагревания на 40 °С. Температурный коэффициент линейного расширения стали найдем по таблице, приведенной выше.
Дано:
Поиск математической модели
По определению температурного коэффициента линейного расширения:
Решение и анализ результатов
Из формулы для определения температурного коэффициента линейного расширения найдем удлинение рельса:
Поскольку получаем Проверим единицу искомой величины:
Найдем числовое значение:
таким образом,
Проанализируем результат: увеличение длины рельса вполне реально.
Ответ: длина рельса увеличилась на 3,92 мм.
Заказать решение задач по физике
Итоги:
Твердые тела, жидкости и газы во время нагревания, как правило, расширяются. Причина теплового расширения в том, что с увеличением температуры увеличивается скорость движения атомов и молекул. В результате увеличивается среднее расстояние между атомами (молекулами). Тепловое расширение твердых веществ характеризуется коэффициентом линейного расширения. Коэффициент линейного расширения численно равен отношению изменения длины тела вследствие нагревания его на 1 °С и его начальной длины
Строение вещества:
1. Изучая этот раздел, вы еще раз вспомнили, что все физические тела состоят из веществ, познакомились с некоторыми физическими величинами, характеризующими тело и вещество.
2.Вы вспомнили основные положения атомно-молекулярной теории строения вещества.
3.Вы выяснили, чем и почему отличаются физические свойства веществ в разных агрегатных состояниях.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Световые явления
- Источники света
- Скорость света
- Отражение света
- Скорость движения молекул газа
- Газовые законы
- Взаимодействие молекул
- Агрегатное состояние вещества
Свойства графита
Низкая твердость минерала объясняется слабыми связями между атомными слоями: ему присвоен всего 1 балл по шкале Мооса (твердость алмаза, другой аллотропной формы углерода, оценена в 10 баллов).
Полезные свойства графита, используемые в промышленности:
- Электропроводность. От большинства металлов минерал отличается тем, что при повышении температуры его электропроводность возрастает. По этому показателю он в 2,5 раза превосходит ртуть.
- Теплопроводность минерала составляет 3,55 Вт*град/см, коэффициент теплопроводности – 0,041. Материал проводит тепло лучше меди.
- Инертность. Большинство агрессивных кислот, щелочей и солей не растворяют графит. Материал интенсивно окисляется на воздухе при температуре выше 750 K.
- Термостойкость. Минерал способен выдерживать значительные колебания температуры. Он не плавится, но при температуре 3900 K и давлении 0,9–1 атм переходит из твердого состояния в газообразное (сублимирует).
- Механическая прочность материала увеличивается при повышении температуры до 2700 K, затем начинает понижаться.
Из-за того, что связи между атомами в слое гораздо прочнее, чем между слоями, некоторые свойства графита (электропроводность, теплопроводность) носят анизотропный характер: в направлении, перпендикулярном атомным слоям, сопротивление в несколько раз выше, а теплопроводность ниже, чем в параллельном.
Таблица удельной теплоемкости жидкостей
В таблице представлены значения удельной теплоемкости Cp распространенных жидкостей при температуре 10…25°С и нормальном атмосферном давлении. Таблица удельной теплоемкости жидкостей
Жидкости | Cp, Дж/(кг·К) |
Азотная кислота (100%-ная) NH3 | 1720 |
Анилин C6H5NH2 | 2641 |
Антифриз (тосол) | 2990 |
Ацетон C3H6O | 2160 |
Бензин | 2090 |
Бензин авиационный Б-70 | 2050 |
Бензол C6H6 | 1050 |
Вода H2O | 4182 |
Вода морская | 3936 |
Вода тяжелая D2O | 4208 |
Водка (40% об.) | 3965 |
Водный раствор хлорида натрия (25%-ный) | 3300 |
Газойль | 1900 |
Гидроксид аммония | 4610 |
Глицерин C3H5(OH)3 | 2430 |
Даутерм | 1590 |
Карборан C2H12B10 | 1720 |
Керосин | 2085…2220 |
Кефир | 3770 |
Мазут | 2180 |
Масло АМГ-10 | 1840 |
Масло ВМ-4 | 1480 |
Масло касторовое | 2219 |
Масло кукурузное | 1733 |
Масло МС-20 | 2030 |
Масло подсолнечное рафинированное | 1775 |
Масло ТМ-1 | 1640 |
Масло трансформаторное | 1680 |
Масло хлопковое рафинированное | 1737 |
Масло ХФ-22 | 1640 |
Молоко сгущенное с сахаром | 3936 |
Молоко цельное | 3906 |
Нефть | 2100 |
Парафин жидкий (при 50С) | 3000 |
Пиво | 3940 |
Серная кислота (100%-ная) H2SO4 | 1380 |
Сероуглерод CS2 | 1000 |
Силикон | 2060 |
Скипидар | 1800 |
Сливки (35% жирности) | 3517 |
Сок виноградный | 2800…3690 |
Спирт метиловый (метанол) CH3OH | 2470 |
Спирт этиловый (этанол) C2H5OH | 2470 |
Сыворотка молочная | 4082 |
Толуол C7H8 | 1130 |
Топливо дизельное (солярка) | 2010 |
Топливо реактивное | 2005 |
Уротропин C6H12N4 | 1470 |
Фреон-12 CCl2F2 | 840 |
Эфир этиловый C4H10O | 2340 |
1.7. Температурные деформации в статически неопределимых конструкциях
Статически неопределимыми конструкциями называются конструкции, у которых число реакций превышает число уравнений статического равновесия
В отличие от статически определимых конструкций при расчете таких конструкций принимаются во внимание прогибы
В статически неопределимой конструкции температурные напряжения могут возникать или не возникать в зависимости от особенностей конструкции и особенностей температурных изменений. Чтобы проиллюстрировать некоторые из таких возможностей, рассмотрим статически неопределимую ферму, показанную на рисунке 2.4.
Рисунок 2.4 — Статически неопределимая ферма под воздействием изменений температуры
Опоры этой конструкции позволяют узлу D двигаться горизонтально. Поэтому, когда вся ферма однородно нагревается, в ней не возникает температурных напряжений. Все элементы увеличиваются в длине пропорционально своим первоначальным длинам, а вся ферма в целом становится немного больше в размерах.
Однако, если некоторые из стержней нагреваются, а другие – нет, то возникают температурные напряжения, так как статически неопределимое расположение стержней препятствует их свободному расширению.
Столбчатый
Чтобы высчитать объем столбов с квадратным или прямоугольным сечением, нужно использовать следующую формулу:
V=a*b*l*n, где a и b – стороны сечения столба, l – длина столба, n – количество столбов в фундаменте.
Для вычисления объема бетона для заливки столбов с круглым сечением, понадобится формула нахождения площади круга: S=3,14*R*R, где R – радиус. Получаем формулу вычисления объема столбов с круглым сечением:
V=S*L*n
Для получения общего объема бетона, требуемого для заливки столбов и ростверка, необходимо сложить уже полученные показатели, не забывая про коэффициент погрешности в 2%.
Преимущества и недостатки
Из конструктивных недостатков армированных фиброволокном труб из пропилена можно отметить лишь то, что по сравнению с моделями, усиленными алюминием, коэффициент расширения у них немного выше – на 5-6%.
Но по сравнению с неармированными он ниже втрое, на 75%, что позволяет увеличить расстояние между креплениями и снижает стоимость монтажа. А также:
- Они значительно тоньше неусиленных ПП труб, что очень актуально при их проведении в стенах, при этом проводимость теплоносителя выше на 20%.
- Слой стекловолокна не даст трубопроводу прорваться, что обеспечивает износостойкость и увеличение долговечности – до 50 лет.
- Прочность и плотность соединений не требует регулярного обслуживания.
- Благодаря хорошим изоляционным свойствам отсутствует конденсация, а потери тепла минимальны.
- Небольшое тепловое расширение максимально снижает риск повреждений.
- Кроме того, во время установки они не требуют калибровки и зачистки, что необходимо для труб, армированных фольгой из алюминия.
- Теплопроводность соответствует показателям обычных ПП труб и ниже, чем у усиленных алюминием.
- Известны случаи расслаивания AL полипропиленовых изделий, что исключено при соэкструзии стекловолокном.
- Все материалы нетоксичные и совершенно безвредные.
- Имеют небольшой вес, отличаются простотой монтажа. Соединяются любым способом – пайка раструбная или стыковая, резьбовое или фланцевое соединение.
- Химическая устойчивость позволяет выдержать даже некачественный теплоноситель.
- Высокая проходимость за счет гладкой внутренней поверхности, соответственно, и отсутствия отложений.
- Трубы эластичные, абразивоустойчивые и малошумные, отличаются стойкостью к повышению давления.
- Выдерживают температурные значения в диапазоне -10 – +95 по Цельсию.
- При достижении и даже превышении критических отметок FB труба может расшириться и провиснуть, но не лопнет.
Правда, у некоторых вызывает опасение возможность попадания частиц фиброволокна в воду. Чтобы избежать подобной вероятности, трубы можно обработать торцевателем – это исключит контакт армирующего слоя с водой.
Кристаллографическая характеристика
Сингония гексагональная.
Класс гексагонально-дипирамидальный.
Кристаллическая структура. Структура слоистого типа. В бесконечной плоской сетке каждая петля представляет шестиугольник бензольного типа; около каждого атома С имеются три соседних на таком же расстоянии. Параллельные сетки отстоят друг от друга на значительном расстоянии. На период с приходятся две такие взаимно параллельные сетки, которые взаимно смещены так, что над центром шестиугольника нижней сетки находится узел верхней сетки. Ввиду слабой связи между сетками эта закономерность строения решетки графита часто нарушается, и по отношению к центру шестиугольника одного слоя верхний и нижний слои располагаются так, что тройки лучей С — С, находящиеся над и под осью среднего кольца, взаимно повернуты на 180°. Если такое нарушение строения решетки графита проявляется в большом масштабе, то говорят о ромбоэдрической (трехслойной) модификации графита. Возможны и другие нарушения в чередовании слоев. Наличие в решетке подвижных электронов обусловливает ряд свойств графита, приближающихся к свойствам металлов: цвет, блеск, электро- и теплопроводность, кислотоупорность и т. п. Различие связей в решетке в направлении слоистости и перпендикулярно к нему вызывает резко выраженную анизотропию твердости, электропроводности, магнитных, оптических и других свойств.
Главные формы: Кристаллы таблитчатые по (0001), несовершенные; образуют шестиугольные пластинки с развитыми гранями (h0hl) при отсутствии или подчиненном значении (hh2hl). Наиболее обычны формы: с, r, о, q, р. На гранях наблюдается штриховка.
Давление в жидкости
Нормальная сила F называется силой давления и вызывает в жидкости нормальные напряжения сжатия, которые определяются отношением:
Нормальные напряжения, возникающие в жидкости под действием внешних сил, называются гидромеханическим давлением или просто давлением.
Системы отсчета давления
Рассмотрим системы отсчета давления. Важным при решении практических задач является выбор системы отсчета давления (шкалы давления). За начало шкалы может быть принят абсолютный нуль давления. При отсчете давлений от этого нуля их называют абсолютными — Pабс.
Однако, как показывает практика, технические задачи удобнее решать, используя избыточные давления Pизб, т.е. когда за начало шкалы принимается атмосферное давление.
Давление, которое отсчитывается «вниз» от атмосферного нуля, называется давлением вакуума Pвак, или вакуумом.
где Pатм — атмосферное давление, измеренное барометром.
Связь между абсолютным давлением Pабс и давлением вакуума Pвак можно установить аналогичным путем:
И избыточное давление, и вакуум отсчитываются от одного нуля (Pатм), но в разные стороны.
Таким образом, абсолютное, избыточное и вакуумное давления связаны и позволяют пересчитать одно в другое.
Единицы измерения давления
Практика показала, что для решения технических (прикладных) задач наиболее удобно использовать избыточные давления. Основной единицей измерения давления в системе СИ является паскаль (Па), который равен давлению, возникающему при действии силы в 1 Н на площадь размером 1 м2 (1 Па = 1 Н/м2).
Однако чаще используются более крупные единицы: килопаскаль (1 кПа = 10 3 Па) и мегапаскаль (1 МПа = 10 6 Па).
В технике широкое распространение получила внесистемная единица — техническая атмосфера (ат), которая равна давлению, возникающему при действии силы в 1 кгс на площадь размером 1 см 2 (1 ат = 1 кгс/см 2 ).
Соотношения между наиболее используемыми единицами следующие:
10 ат = 0,981 МПа ≈ 1 МПа или 1 ат = 98,1 кПа ≈ 100 кПа.
В зарубежной литературе используется также единица измерения давления бар
В каких ещё единицах измеряется давление, можно посмотреть здесь
Рассмотрим некоторые свойства жидкостей, которые оказывают наиболее существенное влияние на происходящие в них процессы и поэтому учитываются при расчетах гидравлических систем.
Технология тепловой обработки и расширение бетона
При тепловой обработке бетон подвергается различным воздействиям, определяющим выбор того или иного режима Особое значение имеют деформации и напряжения, возникающие при нагреве и охлаждении. Нагрев (кроме теплой бетонной смеси) осуществляют в форме после уплотнения уложенной смеси. В результате температурного расширения компонентов смеси объем бетона увеличивается. Особое значение, имеет при этом содержание в смеси воды и воздуха, так как коэффициенты теплового расширения твердых компонентов (цементный камень и заполнитель). При пропарке и обработке горячим воздухом бетон, как уже говорилось, может более, или менее беспрепятственно расширяться как в вертикальном, так и дополнительно в горизонтальном направлении. Преимущество горячей обработки в вертикальных кассетных установках заключается в том, что расширение ограничивается формой, при обработке же горизонтальных изделий с открытой поверхностью имеются условия для свободного расширения. Структурные повреждения возникают лишь при температурном расширении компонентов смеси и прежде всего воздуха и воды. Это тот случай, когда бетон в связи с низкой собственной прочностью и возможностью свободного расширения подвергается пластической деформации, в результате чего после его охлаждения сохраняются остаточные деформации (рис. 1).
Мембранные расширительные баки для систем отопления Wester
membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Общий вид сзади, увеличить membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Вид сверху, увеличить membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Вид снизу, увеличить membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Все объемы, увеличить |
Производитель: Wester HeatingЕмкость: 8, 12, 24, 35, 50, 80, 100, 120, 150, 200, 300, 500, 750, 1000, 1500, 2000, 2500, 3000, 5000, 10 000 литровПреддавление в воздушной полости: 1,5 барМакс. давление: 5,0 барРабочая температура: -10°C…+100°C – Предназначены для компенсации температурных расширений теплоносителя в замкнутых системах отопления. – Основные элементы бака – корпус из высококачественной стали, эластичная мембрана из каучука. – Давление в воздушной полости для баков от 8 до 150 литров – 1,5 бара, от 200 до 10 000 литров – бара. – Теплоноситель в системе отопления – вода с содержанием гликоля не выше 50%. – Расширительные баки комплектуются сменной мембраной. – Температурный режим работы – от -10 °С до +100 °С – Срок службы – 100 000 циклов. – Цвет корпуса – красный. |
Характеристики и цены >>> |
Наименование |
Стоимостьс НДС, руб. | В наличиина складе | |
---|---|---|---|
Мембранный бак для отопления Wester WRV8 |
991,00 |
Купить Мембранный бак для отопления Wester WRV8 |
|
Мембранный бак для отопления Wester WRV12 |
1 073,00 |
Купить Мембранный бак для отопления Wester WRV12 |
|
Мембранный бак для отопления Wester WRV18 |
1 173,00 |
Купить Мембранный бак для отопления Wester WRV18 |
|
Мембранный бак для отопления Wester WRV24 |
1 343,00 |
Купить Мембранный бак для отопления Wester WRV24 |
|
Мембранный бак для отопления Wester WRV35 |
2 199,00 |
Купить Мембранный бак для отопления Wester WRV35 |
|
Мембранный бак для отопления Wester WRV50 |
2 624,00 |
Купить Мембранный бак для отопления Wester WRV50 |
|
Мембранный бак для отопления Wester WRV80 |
3 832,00 |
Купить Мембранный бак для отопления Wester WRV80 |
|
Мембранный бак для отопления Wester WRV100 |
5 508,00 |
Купить Мембранный бак для отопления Wester WRV100 |
|
Мембранный бак для отопления Wester WRV150 |
8 325,00 |
Купить Мембранный бак для отопления Wester WRV150 |
|
Мембранный бак для отопления Wester WRV200 (top) |
12 367,00 |
Купить Мембранный бак для отопления Wester WRV200 (top) |
|
Мембранный бак для отопления Wester WRV300 (top) |
15 114,00 |
Купить Мембранный бак для отопления Wester WRV300 (top) |
|
Мембранный бак для отопления Wester WRV500 (top) |
29 572,00 |
Купить Мембранный бак для отопления Wester WRV500 (top) |
|
Мембранный бак для отопления Wester WRV750 |
67 580,00 |
Купить Мембранный бак для отопления Wester WRV750 |
|
Мембранный бак для отопления Wester WRV1000 |
90 664,00 |
Купить Мембранный бак для отопления Wester WRV1000 |
Коэффициент термическогорасширения бетона
Коэффициент термического расширения бетона
Величина коэффициента термического расширения бетона зависит от состава бетонной смеси и влажности в период изменения температуры. Цементный камень и заполнитель имеют разные коэффициенты термического расширения, а коэффициент термического расширения бетона отражает соотношение материалов в составе бетона.
Коэффициент термического расширения цементного камня колеблется в пределах от 10ХЮ6 до 18,ЗХЮ6 на 1°С. Он больше, чем у заполнителя. Коэффициент термического расширения бетона зависит от количества заполнителя в смеси (табл. 7.10) и коэффициента расширения заполнителя.
Влияние влажности обусловлено составляющими цементного камня и определяется тем, что коэффициент термического расширения слагается из двух частей: действительного кинетического термического коэффициента и давления набухания.
Последнее увеличивается с уменьшением капиллярного давления воды в цементном камне при повышении температуры. Набухание невозможно, если образец сухой, т.е. не содержит воды, и если он насыщен. Следовательно, при этих двух предельных состояниях коэффициент термического расширения меньше, чем при частичном насыщении.
На рис. 7.25 и 7.26 приведены данные для цементного камня. В бетоне мы наблюдаем те же зависимости, хотя коэффициент термического расширения меняется меньше, так как только цементный камень реагирует на изменение влажности и возраст. В табл. 7.11 приведены значения коэффициентов термического расширения бетона состава 1 :6, твердевшего на воздухе при 64%-ной относительной влажности, в воде и увлажненного после воздушного твердения.
Только величины, определенные на насыщенных и высушенных образцах, дают действительные значения коэффициента термического расширения, но величины при промежуточных значениях влажности необходимы, так как они отражают реальные условия эксплуатации бетона Ьсли повышение температуры при переходе от зимы к лету сопровождается высыханием, появляется усадка и чистое расширение меньше чем при отсутствии потери бетоном воды.
Химический состав и тонкость помола цемента влияют на величину коэффициента термического расширения лишь постольку, поскольку они влияют на свойства в раннем возрасте. Наличие воздушных пор влияния не оказывает.
Все сказанное относится к нормальным температурам ниже 40° С.
Более высокие температуры могут встречаться, например, в аэродромных покрытиях при действии отходящих газов реактивных двигателей и в производственных условиях. На рис. 7.27 показано, что при температуре выше 320°С коэффициент термического расширения бетона возрастает, возможно, вследствие дегидратации цементного камня. Значения коэффициента термического расширения приведены в табл. 7.12.
Лабораторные испытания показали, что бетоны с большим коэффициентом термического расширения менее стойки к изменениям температуры, чем бетоны с меньшим значением коэффициента расширения. На рис. 7.28 показаны результаты испытаний бетона, подвергавшегося повторному нагреванию и охлаждению в интервале температур 4,4—60° С со скоростью 2,4° в минуту. Однако коэффициент термического расширения не может служить количественной характеристикой долговечности бетона, подвергающегося частым или быстрым изменениям температуры.
Но более быстрое изменение температуры, чем в обычных условиях, может вызвать разрушение бетона. На рис. 7.29 показано влияние быстрого охлаждения после нагревания до указанной температуры.
midas-beton.ru
Способы ликвидации эффекта теплового расширения труб
p, blockquote 10,0,0,0,0 –>
- При установке системы отопления, между трубопроводом и стеной предполагаются определенного размера зазоры. Следовательно, у труб появляется возможность расширяться при нагревании на несколько сантиметров. Во избежание полной поломки систему отопления не прокладывают строго вдоль стен;
- Наиболее тщательно необходимо следить за пайкой труб из полипропилена в участках углов помещения. Нужно сохранять зазоры определенного размера для предотвращения упора труб в стену;
- На участках продолжительного трубопровода обязательно устанавливают особые компенсаторы. В П-образных зонах тепловое расширение способствует подвижности полипропиленовых труб. Дабы воздушные камеры не образовывались в верхних участках подобных компенсаторов, их установку производят с наклоном. В подобном случае во время наполнения системы горячим теплоносителем воздушные пробки из них уйдут;
- При грамотном применении опор и подбора определенной формы трубопровода проблема линейного расширения устраняется.
- Основные рекомендации монтирования: устройство гибкой системы, с минимальным количеством жестких стыков, обладающих низкой способностью к деформированию.
Трубы из полипропилена, при соблюдении рекомендации производителя и правил монтажа, отличаются от других видов своей небольшой стоимостью, простотой укладки, большим сроком эксплуатации и безопасностью.
p, blockquote 11,0,0,0,0 –> p, blockquote 12,0,0,0,1 –>
Полипропилен является самым востребованным материалом на рынке. Связано это не с его особенным качеством, а все же с приятной стоимостью. Но за все доступное в итоге приходиться расплачиваться. Поэтому в этой статье вы узнаете 9 недостатков отопления дома полипропиленовыми трубами.
Теплоемкость бетона Коэффициент расширения бетона
При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.
Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.
Связанные статьи: Преимущества пенобетона
Коэффициент расширения бетона
Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.
Температурно усадочные швы
Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.
Связанные статьи:
- Дома из пенобетонных блоков
- Сколько цемента в кубе бетона
Теплоемкости бетонов
Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.
Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.
Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)
Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.
Смотрите так же: Керамзитобетон состав и пропорции
Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.
- Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
- Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
- Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.
betonobeton.ru
1.5. Температурные перемещения
Вернемся к бруску материала, показанного на рисунке 1 . Предполагаем, что материал бруска является гомогенным и изотропным, то есть механические свойства материала бруска являются одинаковыми во всем его объеме. Кроме того, предполагаем, что изменение температуры ΔT
является однородным, то есть одинаковым, по всему бруску. При таких условиях мы можем вычислить увеличение любого размера бруска путем умножения первоначального размера на температурную деформацию. Например, если один из размеров бруска составляет L, то этот размер увеличиться на величину
δТ = εT·L=α·ΔT·L (4) Уравнение (4) можно применять для вычисления изменений длин элементов конструкций после однородного нагрева, например, удлинение призматического стержня на рисунке 2.2. Поперечные размеры стержня также изменятся, но эти изменения не показаны на рисунке 2.2, так как обычно они не оказывают влияния на осевые силы, которые передаются этим стержнем.
Рисунок 2.2 – Увеличение длины призматического стрежня в результате однородного увеличения температуры (уравнение (4))
Пример.
Оценим удлинение незакрепленных алюминиевого и стального стержней длиной 3 м при увеличении их температуры на 50 ºС.
Для алюминиевого стержня:
δТ =α·ΔT·L = 23·10-6·50·3000 = 3,5 мм Для стержня из малоуглеродистой стали:
δТ =α·ΔT·L = 12·10-6·50·3000 = 1,8 мм При рассмотрении выше температурных деформаций предполагалось, что конструкция не имеет ограничений для своих перемещений, что позволяло ей расширяться или сокращаться совершенно свободно. Такие условия возникают, например, когда объект лежит на гладкой поверхности, на которой не возникает трения . В таких случаях при однородном нагреве всего объекта в целом не возникает напряжений, хотя неоднородные изменения температуры могут вызывать внутренние температурные напряжения. Однако многие конструкции имеют опоры, которые препятствуют свободному расширению и сокращению их размеров. Поэтому в них развиваются температурные напряжения даже, если изменение температуры является однородным по всей конструкции.