Плавка с расходуемым электродом
Этот процесс, проводимый в электродуговых печах в вакууме или среде аргона, служит для получения слитков из многих тугоплавких металлов и их сплавов, в частности титана и молибдена.
Рис. .
Дуговая печь для плавки с расходуемым электродом:
1 — вакуумная камера; 2
— загрузочная течка;3 — бункер для добавок;4 — расходуемый электрод; 5 — кожух электрода;6 — подающие ролики; 7 — смотровое окно;8 — вентиль;9 — электронный измеритель вакуума;10 — вакуумные краны; 11 — ловушка;12 — форвакуумний насос;13 —пароструйный насос;14 — поддон;15 — подвижное дно кристаллизатора;16 — соленоид;17 — медный кристаллизатор с водяным охлаждением
В герметичной вакуумной камере помещают медный охлаждаемый водой кристаллизатор, содержимое которого служит од ним полюсом электрической дуги, автоматически опускаемый расходуемый электрод — другой ее полюс (рис
.). Электрод прессуют из порошка металлов и их смесей под давлением 197,1—588,3 МН/м 2 , конец его опущен в кристаллизатор, на стен ках которого затвердевает слой расплава гарниссаж. Кристаллизатор по ходу плавки автоматически опускается вытягивая слиток; для зажигания дуги на дно его кладут диск из металла. Длина шнура плазмы 25—30 мм поддерживается и направляется полем соленоида, который предупреждает переброс дуги на стенки кристаллизатора и вызывает циркуляцию расплава. Фор-вакуумный и пароструйный насосы поддерживают остаточное] давление порядка 133,4•10 -3 —133,4• 10 -4 Н/м 2 и откачивают газы, отходящие при плавке. Для получения больших слитков диаметром до 350 мм применяют электрод, наращиваемый аргоно-дуговой сваркой из блоков длиной по 500 мм. Дуга работает при напряжении постоянного тока 30 В и силе его до 100 кА. Так плавят молибден и выплавляют слитки титана массой до 10 т с поперечником около 1 м.
Сплавы делают так же; добавки вводят в электрод в виде богатых лигатур (порошков или стружки), а малые — в кристаллизатор. Недостаточно однородные сплавы переплавляют, применяя их в качестве расходуемого электрода.
Производство тугоплавких металлов
По причине высокой химической активности основной технологией выработки жаропрочных металлов служит порошковая металлургия.
Существует несколько методов получения металлов данной категории в виде порошка.
Реакция восстановления с участием триоксида водорода включает в себя несколько этапов, и применяется для выработки молибдена и вольфрама. Процесс осуществляется в многотрубных печах при 750-950 градусах.
Схема восстановления при помощи водорода перрината предназначена для получения металлического рения. Средняя температура составляет 500 градусов, а на последнем этапе происходит отделение порошка от щелочи при помощи процедуры вымывания с последовательным использованием воды и раствора соляной кислоты.
Для получения молибдена применяют соли разных металлов. Чаще всего в качестве исходного сырья выступает аммонийная соль и металлический порошок металла, который добавляют в смесь в пропорции от 5 до 15% от общего объема. Технология предполагает обработку сырья при температуре от 500 до 800 градусов в потоке инертного газа. Реакция восстановления осуществляется в водородной среде с температурным режимом от 800 до 1000 градусов.
Полученный в виде порошка металл прессуют или запекают.
Хром и его сплавы
Один из самых твердых металлов, в естественном виде голубовато-белой окраски. Его температура плавления ниже, чем у рассмотренных до сих пор элементов, и составляет 1907 оС. Однако он все равно используется в технике и промышленности повсеместно, так как хорошо поддается механическим воздействиям, обрабатывается и формуется.
Особенно ценен хром в качестве напылителя. Его наносят на изделия для придания им красивого блеска, защиты от коррозии и повышения износостойкости. Процесс называется хромированием.
Сплавы хрома очень популярны. Ведь даже небольшое количество этого металла в сплаве значительно увеличивает твердость и устойчивость последнего к воздействиям.
Сфера применения
Жаропрочные металлы в чистом виде востребованы в:
- сверхзвуковой авиации;
- ракетостроении и создании космических кораблей;
- производстве ракет и снарядов с радиоуправлением;
- вакуумной технике и электронике.
К примеру, ниобий без примесей необходим при изготовлении трубок, сеток, электронных деталей для электровакуумных радиоламп, а также электродов-анодов для электровакуумных устройств. Подобное назначение у молибдена и вольфрама. Их используют для электродов радиоламп, подвесок и крючков электровакуумных установок. Вольфрамовые монокристаллы необходимы для производства катодов, предохранителей, электрических контактов. Кроме того, металл с самой высокой температурой плавления давно востребован для нитей накаливания в привычных всем электрических лампах.
Труба из ниобия
Ниобий и ванадий в чистом виде предназначены в первую очередь для атомной энергетики. Именно из них делают оболочки тепловыделяющих элементов и трубы ядерных реакторов. Чистый тантал необходим для химической отрасли в силу повышенной устойчивости к коррозии. Из него изготавливают технологические емкости, детали аппаратов и установок, различную посуду.
Производство проката включает:
- трубы и листы;
- проволоку и пруток;
- фольгу и полосы (обычного типа или для глубокой вытяжки).
В отдельную позицию выделяют тугоплавкий припой. Это обусловлено отсутствием в его составе элементов с высокой температурой плавления. В роли компонентов применяют никель, медь, магний или серебро.
Получение тугоплавких материалов
Как отмечалось ранее, основной препятствующий фактор производству жаропрочных металлов их высокая химическая активность, препятствующая выделению элементов в чистом виде.
Основной технологией получения остается порошковая металлургия. Данная методика позволяет получать порошки тугоплавких металлов различными способами:
- Восстановление триоксидом водорода. Процесс производится в несколько этапов, внутри многотрубных печей при 750 – 950 °С. Технология применима под порошки тугоплавких металлов: вольфрам и молибден.
- Восстановлением водородом перрената. Схема реализуется в производстве металлического рения. Рабочие температуры составляют около 500 °С. Заключительная стадия предусматривает отмывание порошка от щелочи. Для этого последовательно используется горячая вода и раствор соляной кислоты.
- Использование солей металлов. Технология развита для выделения молибдена. Основным сырьем выступает аммонийная соль металла и его металлический порошок, вводимый в смесь на уровне 5 – 15% от массы. Состав проходит термическую обработку 500 – 850 °С в проточном инертном газе. Восстановление металла проходит в атмосфере водорода при температурах 800 – 1000 °С.
Производство тугоплавких металлов – порошковая металлургия
Экскурсия на производство
Способы получения жаропрочных металлов продолжают совершенствоваться, как и химическая технология тугоплавких неметаллических и силикатных материалов, что связано с развитием ядерной энергетики, авиастроения, появлением новых моделей ракетных двигателей.
Одно из крупнейших предприятий по производству вольфрама на территории РФ – унечский завод тугоплавких металлов. Этот предприятие относительно молодое, строительство его началось в 2007 году на территории населенного пункта Унеча. Производственный акцент завода направлен на порошки тугоплавких металлов, точнее вольфрама и его карбидов.
В дальнейшем, для получения слитков рассыпчатую массу спекают или сдавливают прессом. Подобным образом порошки тугоплавких металлов обрабатываются для производства жаропрочных изделий.
Самые легкоплавкие и тугоплавкие металлы
К легкоплавким относятся все металлы, температура плавления которых меньше, чем у олова (231,9 °C). Элементы этой группы находят применение в качестве антикоррозийных покрытий, в электро- и радиотехнике, входят в состав антифрикционных сплавов. Ртуть, точка плавления которой -38,89 °C, при комнатной температуре является жидкостью и находит широкое применение в научных приборах, ртутных лампах, выпрямителях, переключателях, в хлорном производстве. У ртути самая низкая температура плавления по сравнению с другими металлами, входящими в группу легкоплавких. К тугоплавким металлам принадлежат все, температура плавления которых больше, чем у железа (1539 °C). Чаще всего их используют в качестве добавок при изготовлении легированных сталей, а также они могут служить и основой для некоторых специальных сплавов. Вольфрам, имеющий максимальную температуру плавления 3420 °C, в чистом виде используют в основном для нитей накала в электролампах.
Довольно часто в кроссвордах задают вопросы, какой из металлов самый легкоплавкий или самый тугоплавкий? Теперь, не задумываясь, можно ответить: самый легкоплавкий – ртуть, а самый тугоплавкий – вольфрам.
Тантал
Металл, в свободном виде и при обычных условиях покрытый оксидной пленкой. Обладает набором физических свойств, которые позволяют ему быть широко распространенным и очень важным для человека. Его основные характеристики следующие:
- При температуре свыше 1000 оС становится сверхпроводником.
- Это наиболее тугоплавкий металл после вольфрама и рения. Температура плавления составляет 3017 оС.
- Прекрасно поглощает газы.
- С ним легко работать, так как он прокатывается в пласты, фольгу и проволоку без особого труда.
- Обладает хорошей твердостью и не хрупкий, сохраняет пластичность.
- Очень устойчив к воздействию химических агентов (не растворяется даже в царской водке).
Благодаря таким характеристикам сумел завоевать популярность как основа для многих жаропрочных и кислотоустойчивых, антикоррозионных сплавов. Его многочисленные соединения находят применение в ядерной физике, электронике, приборах вычислительного плана. Используются как сверхпроводники. Раньше тантал использовался как элемент в лампах накаливания. Сейчас его место занял вольфрам.
Рекорды для неорганических веществ
Самым сильным стабильным окислителем
, является комплекс дифторида криптона и пентафторида сурьмы. Из-за сильного окисляющего действия (окисляет все элементы в высшие степени окисления, в том числе кислород и азот воздуха) для него очень трудно измерить электродный потенциал. Единственный растворитель, который реагирует с ним достаточно медленно — безводный фтористый водород.
Самым плотным веществом
, является осмий. Его плотность составляет 22,5 г/см 3 .
Самый легкий металл
— это литий. Его плотность составляет 0,543 г/см 3 .
Самый дорогой металл
— это калифорний. Его стоимость в настоящее время составляет 6 500 000 долларов за 1 грамм.
Самый распространенный элемент в земной коре
— это кислород. Его содержание составляет 49% от массы земной коры.
Самый редкий элемент в земной коре
— это астат. Его содержание во всей земной коре, по оценкам специалистов составляет всего 0,16 грамм.
Самым горючим веществом
, является, по-видимому, мелкий порошок циркония. Для того чтоб он не мог гореть, необходимо поместить его в атмосферу инертного газа на пластину из материала, не содержащего неметаллов.
Веществом с наименьшей температурой кипения
, является гелий. Его температура кипения равна -269 градусов по Цельсию. Гелий — единственное вещество, не имеющее температуры плавления при обычном давлении. Даже при абсолютном нуле он остается жидким. Жидкий гелий широко используется в криогенной технике.
Самый тугоплавкий металл
— это вольфрам. Его температура плавления составляет +3420 градусов по Цельсию. Из него изготовляют нити накаливания для электрических лампочек.
Самый тугоплавкий материал
— это сплав карбидов гафния и тантала (1:1). Он имеет температуру плавления +4215 С.
Самым легкоплавким металлом
, является ртуть. Ее температура плавления равна -38,87 градусов по Цельсию. Она же являетсясамой тяжелой жидкостью
, ее плотность составляет 13,54 г/см 3 .
Самую высокую растворимость в воде среди твердых веществ
имеет трихлорид сурьмы. Его растворимость при +25 С составляет 9880 грамм на литр.
Самым легким газом
, является водород. Масса 1 литра составляет всего 0,08988 грамм.
Самым тяжелым газом при комнатной температуре
, является гексафторид вольфрама (т. кип. +17 С). Его масса составляет 12,9 г/л, т.е. в нем могут плавать некоторые виды пенопласта.
Самым стойким к кислотам металлом
, является иридий. До сих пор не известно ни одной кислоты или их смеси, в которых он бы растворялся.
Самый широкий диапазон концентрационных пределов взрываемости
имеет сероуглерод. Взрываться могут все смеси паров сероуглерода с воздухом содержащие от 1 до 50 объемных процентов сероуглерода.
Самой сильной стабильной кислотой
является раствор пентафторида сурьмы во фтористом водороде. В зависимости от концентрации пентафторида сурьмы эта кислота может иметь показатель Гаммета до -40.
Самым необычным анионом в соли
является электрон. Он входит в состав электрида 18-краун-6 комплекса натрия.
Рекорды для органических веществ
Самым горьким веществом
, является денатония сахаринат. Его получили случайно, во время исследования денатония бензоата. Сочетание последнего с натриевой солью сахарина дало вещество в 5 раз более горькое, чем предыдущий рекордсмен (денатония бензоат). В настоящее время оба этих вещества используются для денатурации спирта и других непищевых продуктов.
Самым сильным ядом
, является ботулинический токсин типа А. Его летальная доза для мышей (ЛД50, внутрибрюшинно) составляет 0,000026 мкг/кг веса. Это белок с молекулярной массой 150 000, продуцируемый бактерией Clostridium botulinum.
Самым нетоксичным органическим веществом
, является метан. При увеличении его концентрации интоксикация возникает из-за недостатка кислорода, а не в результате отравления.
Самый твердый металл
Самым твердым и при этом легким металлом на нашей планете считается титан. Благодаря своим свойствам, он активно используется в авиации и кораблестроении — материал отлично подходит для изготовления корпусов самолетов и кораблей. К тому же, благодаря прочности и легкости, из титана изготавливают бронежилеты. Этот металл безопасен для человеческого организма, поэтому часто применяется в медицине для изготовления инструментов и даже протезов — искусственных частей тела.
Благодаря выдающимся свойствам, словом «титан» называют видеокарты и прочую электронику, чтобы подчеркнуть их мощность
При нагревании, титан начинает поглощать кислород, хлор, азот и другие газы. Благодаря этому удивительному свойству, металл используется в различных фильтрах — пропуская различные газы через нагретые до 600 градусов Цельсия титановые трубки, можно очистить их от примесей. Таким же образом можно очистить воду от кислорода, что особенно полезно в пищевой промышленности. Считается, что содержащийся в воде кислород ухудшает качество некоторых продуктов — как минимум, он может сократить срок годности пива.
Получение тугоплавких материалов
Как отмечалось ранее, основной препятствующий фактор производству жаропрочных металлов их высокая химическая активность, препятствующая выделению элементов в чистом виде.
Основной технологией получения остается порошковая металлургия. Данная методика позволяет получать порошки тугоплавких металлов различными способами:
- Восстановление триоксидом водорода. Процесс производится в несколько этапов, внутри многотрубных печей при 750 – 950 °С. Технология применима под порошки тугоплавких металлов: вольфрам и молибден.
- Восстановлением водородом перрената. Схема реализуется в производстве металлического рения. Рабочие температуры составляют около 500 °С. Заключительная стадия предусматривает отмывание порошка от щелочи. Для этого последовательно используется горячая вода и раствор соляной кислоты.
- Использование солей металлов. Технология развита для выделения молибдена. Основным сырьем выступает аммонийная соль металла и его металлический порошок, вводимый в смесь на уровне 5 — 15% от массы. Состав проходит термическую обработку 500 – 850 °С в проточном инертном газе. Восстановление металла проходит в атмосфере водорода при температурах 800 – 1000 °С.
Производство тугоплавких металлов — порошковая металлургия
Экскурсия на производство
Способы получения жаропрочных металлов продолжают совершенствоваться, как и химическая технология тугоплавких неметаллических и силикатных материалов, что связано с развитием ядерной энергетики, авиастроения, появлением новых моделей ракетных двигателей.
Одно из крупнейших предприятий по производству вольфрама на территории РФ – унечский завод тугоплавких металлов. Этот предприятие относительно молодое, строительство его началось в 2007 году на территории населенного пункта Унеча. Производственный акцент завода направлен на порошки тугоплавких металлов, точнее вольфрама и его карбидов.
В дальнейшем, для получения слитков рассыпчатую массу спекают или сдавливают прессом. Подобным образом порошки тугоплавких металлов обрабатываются для производства жаропрочных изделий.
Самый тугоплавкий металл в мире — свойства, получение, применение
Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.
Где применяется вольфрам?
Широко используют соединения вольфрама. Их применяют в машиностроительной и горнодобывающей промышленностях, для бурения скважин. Из данного металла благодаря его высокой прочности и твердости изготавливают детали двигателей летательных аппаратов, нити накаливания, артиллерийские снаряды, сверхскоростные роторы гироскопов, пули и т.д. Также вольфрам успешно применяется как электрод при аргонно-дуговой сварке. Не обходятся и такие отрасли промышленности без соединений вольфрама – текстильная, лакокрасочная.
Определение
Большинство определений термина тугоплавкие металлы
определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 4,000°F (2,200°C ). Это необходимо для их определения как тугоплавких металлов.
Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий.
Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам.
Сравнительная таблица степени тугоплавкости чистых металлов
Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала.
Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам.
Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.
https://youtube.com/watch?v=d9060b-BaPA
Пороговые величины остальных соединений приведены ниже:
- рений 3186;
- осмий 3027;
- тантал 3014;
- молибден 2623;
- ниобий 2477;
- иридий 2446;
- рутений 2334;
- гафний 2233;
- родий 1964;
- ванадий 1910;
- хром 1907;
- цирконий 1855;
- титан 1668.
Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала. Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей. Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.
Хром в чистом виде
Свойства самых тугоплавких металлов
Так самый тугоплавкий металл в мире (вольфрам) обычно легируется рением, торием, никелем при участии меди и/или железа. Первый делает сплав более коррозионстойким, второй — более надежным, а третий — придает небывалую плотность
Следует обратить внимание, что во всех сплавах вольфрама содержится не более 4/5
Из-за того, что вольфрам одновременно и твердый, и тугоплавкий его обычно применяют в электроснабжении, строении приборов, изготовлении оружия, снарядов, боеголовок и ракет. Более плотные сплавы (на базе никеля) применяют для производства клюшек для игры в гольф. Вольфрам образует и так называемые псевдосплавы. Дело в том, что в них металл не легируется, а наполняется жидким серебром или медью.
За счет разницы в температурах расплава получаются лучшие тепло и электропроводные свойства.
Это дает возможность использовать его для изготовления форм для литья цинковых деталей. Особое направления использования молибдена — в качестве легирующего элемента в стальных сплавах. Сплавы сталь+молибден обладают хорошей износостойкостью и невысокими показателями трения.
Сталь+молибден применяют в для изготовления труб, трубных конструкций, автомобиле и машиностроении.
Характеристики самого плотного металла
Ученые сошлись во мнении, что, несмотря на практически одинаковую плотность, иридий совсем чуть-чуть уступает самому тяжелому металлу. Однако полностью физико-химические свойства этих двух элементов пока не изучены.
Редкостью и трудозатратностью добычи обусловлена стоимость осмия – в среднем от $15 000 за грамм. Он внесен в группу платиновых и условно считается благородным, однако название металла противоречит статусу: по-гречески «осме» значит «запах». Из-за высокой химической активности осмий пахнет смесью чеснока или редьки с хлором.
Застывая из расплава, осмий образует красивые кристаллы с интересным сине- или серебристо-голубым отливом. Но, несмотря на красоту, для изготовления драгоценных аксессуаров он не подходит, так как не обладает свойствами, необходимыми ювелирам: ковкостью и пластичностью.
Элемент ценен только из-за особой прочности. Сплавы, в которые добавляют совсем малые дозы самого тяжелого металла, становятся невероятно износостойкими. Обычно им покрывают узлы, подвергающиеся постоянному трению.
История открытия
1803—1804 годы стали для самого тяжелого металла поворотными: именно в это время его открытие проходило практически в условиях соревнований.
Сначала английский химик Смитсон Теннант и его ассистент Уильям Хайд Уолластон, совершившие не одно важное открытие, обнаружили в процессе эксперимента с платиновыми рудами и азотной и соляной кислотами необычный осадок с характерным запахом и поделились своей находкой с другими. Далее эстафету перехватили французские ученые Антуан де Фуркруа и Луи-Николя Воклен и на основе предыдущих и своих собственных исследований заявили об обнаружении нового элемента
Название ему дали «птен», что значит «летучий», так как в результате опытов они получали летучий черный дым
Название ему дали «птен», что значит «летучий», так как в результате опытов они получали летучий черный дым
Далее эстафету перехватили французские ученые Антуан де Фуркруа и Луи-Николя Воклен и на основе предыдущих и своих собственных исследований заявили об обнаружении нового элемента. Название ему дали «птен», что значит «летучий», так как в результате опытов они получали летучий черный дым.
Однако и Теннант не спал: он продолжал свои исследования и не упускал из виду опыты французов. В итоге Смитсон добился более конкретных результатов и в официальном документе, отправленном Лондонскому королевскому обществу, указал, что разделил птен на два родственных элемента: иридий («радуга») и осмий («запах»).
Где применяют
Список сфер применения довольно обширен: авиация, военная и ракетная техника, аэрокосмическая промышленность, медицина. Хотя производители оружия уже задумываются, чем можно заменить самый тяжелый в мире металл, так как осмий слишком трудно обрабатывать.
Почти половина мировых запасов самого тяжелого металла отдана на нужды химической промышленности. Им окрашивают живые ткани под микроскопом, обеспечивая их сохранность. Кроме того, его применяют как краситель при росписи фарфора.
Изотопы самого тяжелого металла используют для изготовления тары для хранения ядерных отходов.
Места природного залегания
В чистом виде осмий обнаружить практически нереально. Обычно этот тяжелый элемент встречается в соединении с иридием. Вещество содержится в месторождениях платиновых руд и на месте падения или в самих попавших на Землю метеоритах.
Свойства тугоплавких металлов
За счёт того, что они расположены в соседних группах периодической таблицы, физические свойства у тугоплавких металлов достаточно близкие:
- Плотность металла колеблется в интервале от 6100 до 10000 кг/м3. По этому показателю выделяется только вольфрам. У него он равен 19000 кг/м3.
- Температура плавления. Она превышает температуру плавления железа и колеблется от 1950 °С у ванадия до 3395 °С у вольфрама.
- Удельная теплоёмкость у них незначительно отличается друг от друга и находится в пределах от 200 до 400 Дж/(кг-град).
- Коэффициент теплопроводности сильно меняется от элемента к элементу. Если у ванадия он равен 31 Вт/(м-град), то у вольфрама он достигает величины в 188 Вт/(м-град).
Физические свойства тугоплавких металлов
Химические свойства также достаточно схожие:
- Очень похожее строение атома.
- Обладают высокой химической активностью. Это свойство определяет основные трудности при сохранении стабильности их соединений.
- Прочность межатомных связей определяет высокую температуру плавления. Это обстоятельство объясняет высокую механическую прочность, твёрдость и электрические характеристики (в частности сопротивление).
- Проявляют хорошую устойчивость при воздействии различных кислот.
К основным недостаткам тугоплавких металлов относятся:
- Низкая коррозийная стойкость. Процесс окисления происходит достаточно быстро. Его разделяют на две последовательные стадии. Непосредственное взаимодействие металла с кислородом окружающего воздуха, что приводит к образованию оксидной плёнки. На второй стадии происходит процесс диффузии (проникновения) атомов кислорода через образовавшуюся оксидную плёнку.
- Трудности со свариваемостью тугоплавких металлов. Это вызвано высокой химической активностью к окружающему воздуху при высоких температурах, хрупкостью при насыщении различными примесями. Кроме того, трудно определить точку перегрева и практически невозможно контролировать повышение предела текучести.
- Трудности их получения использования в чистом виде без примесей.
- Необходимость применения специальных покрытий от быстрого окисления. Для сплавов, основу которых составляет вольфрам и молибден, разработаны силицидные покрытия.
- Трудности, связанные с механической обработкой. Для качественной обработки их сначала необходимо нагреть.